Algorithms to Construct Models Decision Trees kNN Formulae Entropy/Information Evaluation Accuracy Error Precision Recall **Bias-Variance Decomposition** Expected Error Bias Variance VC Dimensions **Characteristics of Decision Boundaries of Each ML Algorithm & Each Kernels Problem Setting of Regression Models Parameters** c in SVM

Appendix

Algorithms to Construct Models

	Deci.Tree.	kNN	Poly.reg.	Log.reg.	<u>SVM</u>	Perceptron ¹
Meant For ²	Classifica.	Class.	Regress.	Class.	Class.	Class.
Param. To Prevent Overfit	d depth	k — # of NNs to see	d degree	"regulation" λ on weight	"Tradeoff" C on training data ³	-
Туре	<u>Rule-Based</u> Learning	<u>Instance-</u> Based Learning	<u>Regression</u> <u>Analysis</u>	Regression Analysis	<u>IBL</u> > <u>Kernel</u> <u>Method</u>	0-1 Binary Classifier
Simplest Form	d=1: Deci.Stump	k=1:1NN	d=1 : lin.reg.	-	Linear SVM	-
Optimization Algorithm	Build Tree	Find k-th NN	Gradient Descent	Gradient Descent	Gradient Descent	Gradient Descent
Standardization Needed? / Model Is Scale Variant?	×	×	$\sqrt{4}$	\checkmark	\checkmark	×
Feature Mapping?	Perhaps Helpful	Not Useful	Perhaps Helpful	Perhaps Helpful	Required, Built-In and Core: Kernel	Perhaps Helpful
Supervised?	×	×	\checkmark	\checkmark	\checkmark	\checkmark
Decision Boundary Looks Like	Stairs. Axis- parallel.	Voronoi cells.	Curve of degree d ⁵	Linear	Depends on Kernel	Linear (hyperplane)
Online/Batch Learning	Batch	Batch	Batch / Online	Batch / Online	Batch / Online	Batch / Online
Loss Function	0-1 Loss ⁶	(No Training!)	sum of squared error	Log Loss ("Sigmoid")	Hinge Loss	Hinge Loss
Sub-Loss Func.	InfoGain / SplitInfo	Euclidean Distance	$y_i - h_ heta(x_i)$	$y_i - h_ heta(x_i)$	$y_i - h_\theta(x_i)$	$y_i \cdot h_ heta(x_i)$
Hypothesis Function (if any) $h_ heta(x_i)=rac{7}{7}$	-	-	$ heta^{\mathrm{T}} x_i$	$g(heta^{\mathrm{T}}x_i)$	$ heta^{\mathrm{T}} x_i$	$ heta^{\mathrm{T}} x_i$

Decision Trees

Formulae

Entropy/Information

 $H(X) = -\sum_{i=1}^n P(X_i) \log_2 P(X_i)$

Evaluation

Accuracy

 $accuracy = \frac{\# \text{ of correct predictions}}{\# \text{ of test examples}}$

Error

 $\operatorname{error} = 1 - \operatorname{accuracy} = rac{\# ext{ of incorrect predictions}}{\# ext{ of test examples}}$

Precision

 $\label{eq:precision} \text{precision} = \frac{\# \text{ of test examples predicted to be \& labeled as } + }{\# \text{ of test examples predicted to be } + }$

Recall

 $\mathbf{recall} = \frac{\# \text{ of test examples predicted to be \& labeled as } +}{\# \text{ of test examples labeled to be } +}$

Bias-Variance Decomposition

Expected Error

$$E\left|\left(y-f(x)
ight)^{2}
ight|=\mathrm{Bias}_{f}^{2}+\mathrm{Variance}_{f}+\mathrm{Noise}$$

Bias

 $\mathrm{Bias}ig[\hat{f}\left(x
ight)ig] = \mathrm{E}ig[\hat{f}\left(x
ight) - f(x)ig]$

The error caused by the simplifying assumptions built into the method. / The error caused by using a simpler model to approximate data w/ a more complex trend.

- Low Bias: Suggests less assumptions about the form of the target function.
- High-Bias: Suggests more assumptions about the form of the target function.

Variance

How much the model will move around its mean if we provided different set of training data.

- Low Variance: Suggests <u>small</u> changes to the estimate of the target function with changes to the training dataset.
- **High Variance**: Suggests <u>large</u> changes to the estimate of the target function with changes to the training dataset.

VC Dimensions

If you can find a set of n points, so that it can be shattered by the classifier (i.e. classify *all* possible 2n labelings correctly) and you **cannot** find **any** set of n + 1 points that can be shattered (i.e. for any set of n + 1 points there is at least one labeling order so that the classifier can not separate all points correctly), then the VC dimension is n.

Example: A line can shatter 3 points.

Characteristics of Decision Boundaries of Each ML Algorithm & Each Kernels

- Random Forest & AdaBoost w/ weak hypothesis == decision boundary: Much alike, but Adaboost leaves certain blocks in the hypothesis space unable to be determined.
- Logisitic Regression & Linear Regression & Linear SVM: Gives linear decision boundaries.
- Decision Tree: Stairs. Axis-parallel.

• Nearest Neighbor: Voronoi cells.

Problem Setting of Regression Models

- 1. Load raw data file.
- 2. (Optional) Make more features using mapFeatures().
- 3. Split data into training set and test set.
- 4. Separately **Standardize** two datasets.
- 5. Input d features of n training examples: X.
- 6. Prepend a **column of** 1's to X.
- 7. Apply our **model** $h_{\theta}(x)$ A model is what maps an example x to a label y (this process is called *perdiction*). (*This function itself is called the* **activation function** of this model.)

- Linear Regression uses **Linear Model**: $h_{\theta}(x) = \theta^{T} x$.
- Logistic Regression uses Logistic Model: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$.
 - The Logistic / Sigmoid Function wraps over, and "replaces", the "error function" $h_{\theta}(x)$.
- Perceptron: $h_{\theta}(x) = \operatorname{sign}(\theta^{\mathrm{T}} x)$

8. Use **gradient descent** — how much our θ have to change, in order to achieve lower cost.

- 1. Calculate the **gradient** of the *cost function* w.r.t. features j = 1, ..., d + 1:
 - For Linear Reg.: $\frac{1}{n} \sum_{i=1}^{n} [h_{\theta}(x_i) y_i] \cdot x_j$
 - For Logreg: $\sum_{i=1}^{n} [h_{\theta}(x_i) y_i] \cdot x_j$

BTW, it's the derivative of the **objective function** $J(\theta)$, sum of **cost functions** (errors) in training:

• For Linear Reg., squared errors: $J(\theta) = \sum_{i=1}^{n} \frac{1}{2n} (h_{\theta}(x_i) - y_i)^2$.

```
- For **Logreg**, <u>individual error weighted with $x_i$</u>: $J(\theta)=-
\sum_{i=1}^n[y_i\log h_\theta (x_i)+(1-y_i)\cdot \log(1-h_\theta (x_i))]$.
- For **Perceptron** (under <u>Batch Learning</u>): $J(\theta)=\frac1n
\sum_{i=1}^n\max(0,-y_i \theta^\text{T}x_i)$.
```

2. Add step control \$\alpha\$, and optionally add regularization \$\lambda\$:

```
- For **Linear Reg**.: \ == \alpha == \alpha
```

- 3. Update model parameters θ with the grad.: $\theta \leftarrow \theta \nabla$
 - Perceptron Rule:
 - **Online Learning**: $\theta \leftarrow \theta + y_i \cdot x_i$ only upon misclassification.
 - **Batch Learning**: $\theta \leftarrow \theta + \alpha \cdot \Delta$, where $\Delta = \sum y_i \cdot x_i$ that are misclassified.
- 4. Repeat from Step 1 till convergence (or max step count exceeded).
- 5. To use the model, we simply calculate $h_{ heta}(x)$. Again,
 - Linear Regression uses **Linear Model**: $h_{\theta}(x) = \theta^{T} x$.
 - Logistic Regression uses Logistic Model: $h_{\theta}(x) = \frac{1}{1+e^{-\theta^{T}x}}$.
 - Remember that the motivation of inventing Logreg is to get classifications instead of predictions (like linear reg gives). Therefore, a round() is needed.

 This is NOT to say that we cannot use linreg for prediction; it's just not meant for that.

Parameters

c in SVM

The C parameter tells the SVM optimization how much you want to avoid misclassifying each training example. For **large** values of **C**, the optimization will choose a **smaller-margin** hyperplane if that hyperplane does a better job of getting all the training points classified correctly. Conversely, a very small value of C will cause the optimizer to look for a larger-margin separating hyperplane, even if that hyperplane misclassifies more points. For very tiny values of C, you should get misclassified examples, often even if your training data is linearly separable. ⁸

The SVM has low bias and high variance, but the trade-off can be changed by increasing the C parameter that influences the number of violations of the margin allowed in the training data which increases the bias but decreases the variance.

λ

Regularization factor. Found in $\nabla \equiv lpha \{\sum_{i=1}^n [h_{ heta}(x_i) - y_i] \cdot x_j + \frac{\lambda}{\lambda} \theta_j \}$ (but no λ if j = 1).

Increasing λ , we can reduce variance but increase bias.

The regularization parameter λ is a control on your fitting parameters. As the magnitues of the fitting parameters increase, there will be an increasing penalty on the cost function. **This penalty is dependent on the squares of the parameters as well as the magnitude of** λ **.** Also, notice that the summation after λ does not include θ_0^2 .

Visually, increasing λ , see <u>this</u>.

k

Number of neighbors to consider.

Used in kNN classifiers.

Appendix

• Too little or too much training data could both cause overfitting.

1. Perceptron can be considered as a Linear SVM w/o margin (result-wise). Compared to Linreg: here, ↩

2. Of course they may be used for the other purpose too, just not so smoothly. $\stackrel{O}{\longrightarrow}$

- 4. except un-regularized linear regression with closed form solution $\underline{\mathcal{O}}$
- 5. Not really "decision boundary"!<u>↩</u>
- 6. For each training example, let the tree perdict. If the perdiction is wrong, branch this leaf (1); if right, we do nothing (0).
- 7. In Regression, that's the $h_ heta$ "hypothesis function with the current values of theta". $\stackrel{oldsymbol{ heta}}{=}$
- 8. Source: https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel