
Algorithms to Construct Models
Decision Trees
kNN

Formulae
Entropy/Information
Evaluation

Accuracy
Error
Precision
Recall

Bias-Variance Decomposition
Expected Error
Bias
Variance

VC Dimensions
Characteristics of Decision Boundaries of Each ML Algorithm & Each Kernels
Problem Setting of Regression Models
Parameters

C in SVM

Appendix

Algorithms to Construct Models

 Deci.Tree. kNN Poly.reg. Log.reg. SVM Perceptron 1

Meant For… 2 Classifica. Class. Regress. Class. Class. Class.

Param. To Prevent Overfit d depth
k — # of

NNs to see
d degree

"regulation"
on weight

"Tradeoff" on

training data 3 -

Type
Rule-Based
Learning

Instance-
Based
Learning

Regression
Analysis

Regression
Analysis

IBL > Kernel
Method

0-1 Binary
Classifier

Simplest Form
d=1 :

Deci.Stump
k=1 : 1NN

d=1 :
lin.reg.

- Linear SVM -

Optimization Algorithm Build Tree Find k-th NN
Gradient
Descent

Gradient
Descent

Gradient Descent
Gradient
Descent

Standardization Needed? /
Model Is Scale Variant?

× × √ 4 √ √ ×

Feature Mapping?
Perhaps
Helpful

Not Useful
Perhaps
Helpful

Perhaps
Helpful

Required, Built-In
and Core: Kernel

Perhaps
Helpful

Supervised? × × √ √ √ √

Decision Boundary Looks
Like...

Stairs. Axis-
parallel.

Voronoi cells.
Curve of

degree d 5 Linear Depends on Kernel
Linear
(hyperplane)

Online/Batch Learning Batch Batch
Batch /
Online

Batch / Online Batch / Online Batch / Online

Loss Function 0-1 Loss 6 (No Training!)
sum of
squared
error

Log Loss
("Sigmoid")

Hinge Loss Hinge Loss

Sub-Loss Func.
InfoGain /
SplitInfo

Euclidean
Distance

Hypothesis Function (if any)

 7 - -

Decision Trees

kNN

def create_subtree:
 if algorithm == "ID3" : calculate_score = calculate_infoGain
 elif algorithm == "C4.5" : calculate_score = calculate_infoGain /
calculate_splitInfo
 # Main:
 scores = {attribute: calculate_score(attribute,
 attribute.all_possible_values)
 for attribute in all attributes}
 best_attribute = score.the_attribute_with_highest_score
 return (best_attribute, {value: create_subtree(where best_attribute ==
value)
 for value in best_attribute.all_possible_values})

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Rule-based_machine_learning
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Kernel_method

Formulae

Entropy/Information

Evaluation

Accuracy

Error

Precision

Recall

Bias-Variance Decomposition

Expected Error

Bias

The error caused by the simplifying assumptions built into the method. / The error caused by using
a simpler model to approximate data w/ a more complex trend.

Low Bias: Suggests less assumptions about the form of the target function.
High-Bias: Suggests more assumptions about the form of the target function.

return the label of the k-th nearest neighbor

Variance

How much the model will move around its mean if we provided different set of training data.

Low Variance: Suggests small changes to the estimate of the target function with changes to
the training dataset.
High Variance: Suggests large changes to the estimate of the target function with changes to
the training dataset.

VC Dimensions

If you can find a set of points, so that it can be shattered by the classifier (i.e. classify all possible
 labelings correctly) and you cannot find any set of points that can be shattered (i.e. for

any set of points there is at least one labeling order so that the classifier can not seperate all
points correctly), then the VC dimension is .

Example: A line can shatter 3 points.

Characteristics of Decision Boundaries of
Each ML Algorithm & Each Kernels

Random Forest & AdaBoost w/ weak hypothesis == decision boundary: Much alike, but
Adaboost leaves certain blocks in the hypothesis space unable to be determined.

Logisitic Regression & Linear Regression & Linear SVM: Gives linear decision boundaries.

Decision Tree: Stairs. Axis-parallel.

Nearest Neighbor: Voronoi cells.

Problem Setting of Regression Models
1. Load raw data file.

2. (Optional) Make more features using mapFeatures() .

3. Split data into training set and test set.

4. Separately Standardize two datasets.

5. Input — features of training examples: .

6. Prepend a column of 's to .

7. Apply our model — A model is what maps an example to a label (this process is
called perdiction). (This function itself is called the activation function of this model.)

Linear Regression uses Linear Model: .

Logistic Regression uses Logistic Model: .

The Logistic / Sigmoid Function wraps over, and “replaces”, the "error function" .
Perceptron:

8. Use gradient descent — how much our have to change, in order to achieve lower cost.

1. Calculate the gradient of the cost function w.r.t. features :

For Linear Reg.:
For Logreg:

BTW, it's the derivative of the objective function , sum of cost functions (errors) in
training:

For Linear Reg., squared errors: .

3. Update model parameters with the grad.:

Perceptron Rule:

Online Learning: only upon misclassification.
Batch Learning: , where that are misclassified.

4. Repeat from Step 1 till convergence (or max step count exceeded).

5. To use the model, we simply calculate . Again,

Linear Regression uses Linear Model: .

Logistic Regression uses Logistic Model: .

Remember that the motivation of inventing Logreg is to get classifications instead of
predictions (like linear reg gives). Therefore, a round() is needed.

 - For **Logreg**, <u>individual error weighted with x_i</u>: $J(\theta)=-
\sum_{i=1}^n[y_i\log h_\theta (x_i)+(1-y_i)\cdot \log(1-h_\theta (x_i))]$.
 - For **Perceptron** (under <u>Batch Learning</u>): $J(\theta)=\frac1n
\sum_{i=1}^n\max(0,-y_i \theta^\text{T}x_i)$.

 2. Add step control α, and optionally add regularization λ:

 - For **Linear Reg**.: $\nabla\equiv$ ==α==$\frac1{n}\sum_{i=1}^n
[h_\theta (x_i)-y_i]\cdot x_j$

 - For **Logreg**: $\nabla\equiv$ ==α== $\{\sum_{i=1}^n
[h_\theta (x_i)-y_i]\cdot x_j$==$+\lambda\theta_j$==$\}$ (but no λ if
$j=1$)

This is NOT to say that we cannot use linreg for prediction; it's just not meant
for that.

Parameters

C in SVM

The C parameter tells the SVM optimization how much you want to avoid misclassifying each
training example. For large values of C, the optimization will choose a smaller-margin
hyperplane if that hyperplane does a better job of getting all the training points classified
correctly. Conversely, a very small value of C will cause the optimizer to look for a larger-
margin separating hyperplane, even if that hyperplane misclassifies more points. For very tiny
values of C, you should get misclassified examples, often even if your training data is linearly

separable. 8

The SVM has low bias and high variance, but the trade-off can be changed by increasing the C
parameter that influences the number of violations of the margin allowed in the training data
which increases the bias but decreases the variance.

Regularization factor. Found in (but no if).

Increasing , we can reduce variance but increase bias.

The regularization parameter is a control on your fitting parameters. As the magnitues of the
fitting parameters increase, there will be an increasing penalty on the cost function. This penalty is
dependent on the squares of the parameters as well as the magnitude of . Also, notice that
the summation after does not include .

Visually, increasing , see this.

Number of neighbors to consider.

Used in kNN classifiers.

Appendix
Too little or too much training data could both cause overfitting.

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex5/ex5.html

1. Perceptron can be considered as a Linear SVM w/o margin (result-wise). Compared to Linreg: here.↩

2. Of course they may be used for the other purpose too, just not so smoothly.↩

3. and those in the kernel, if any. e.g.: ↩

4. except un-regularized linear regression with closed form solution↩

5. Not really "decision boundary"!↩

6. For each training example, let the tree perdict. If the perdiction is wrong, branch this leaf (1); if right, we do nothing (0).↩

7. In Regression, that's the — "hypothesis function with the current values of theta". ↩

8. Source: https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel↩

https://stats.stackexchange.com/a/144003/78069
https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel

	Algorithms to Construct Models
	Decision Trees
	kNN

	Formulae
	Entropy/Information
	Evaluation
	Accuracy
	Error
	Precision
	Recall

	Bias-Variance Decomposition
	Expected Error
	Bias
	Variance

	VC Dimensions

	Characteristics of Decision Boundaries of Each ML Algorithm & Each Kernels
	Problem Setting of Regression Models
	Parameters
	C in SVM
	\lambda
	k

	Appendix

