8 – Algos.pptx @ 2/28: Three Common "Design Patterns" in Big Data Analysis Caching / memo(r)ization: process a lot of data that repeats/'partly overlaps' process many different tasks in 'parallel' (3/12/2018) Search and constraint solvers: find an item, a parameter, etc. that maximizes an objective" @3/14/2018 - Unsupervised data analysis Principal Component Analysis (PCA) -- Group similar features together (roughly) Clustering -- Group similar items together How to they compare - time complexity: Other Techniques **Supervised Learning** @03/26/2018 - decision trees @03/28/2018 - regression, boosting and SVMs Regression The Linear Regresion Family Principal Component Regression Logistic Regression := linear regression + filtering using logistic function + binarizing results to 0&1 Boosting SVM @04/02/2018: Tuning and evaluating classifiers @4/4/2018 - Artificial Neural Networks @4/9/2018 - Convolutional Neural Networks @04/11/2018 - Time Series @04/16/2018 - TensorFlow **Distributed TensorFlow** Recurrent Neural Networks (RNN) - Handles Time Series @04/18/2018 - Online Learning Analyzing Real-Time Data Streams @04/23/2018 - Stream Processing Systems Visualization @04/25/2018 - Data Science Ethnics

- Tensorflow supports "half precision" floats -- float16.
 - Float32 is called "full precision"/"single precision".
 - Float64: "double precision".
- Shuffling = re-sharding = ...

8 – Algos.pptx @ 2/28: Three Common "Design Patterns" in Big Data Analysis

Caching / memo(r)ization: process a lot of data that repeats/'partly overlaps'

- Caches
 - In PySpark:
 - pyspark's .cache(): useful even just for caching a file-loading process.
 - Spark gives 5 types of Storage level
 - MEMORY_ONLY
 - MEMORY_ONLY_SER
 - MEMORY_AND_DISK
 - MEMORY_AND_DISK_SER
 - DISK_ONLY

```
cache() will use MEMORY_ONLY. If you want to use something else, use
persist(StorageLevel.<*type*>).
```

By default persist() will store the data in the JVM heap as unserialized objects. (source)

- It's a trade-off between:
 - IO-efficient and re-useable
 - Redundant but parallel

Sometimes you may prefer parallelism more than IO-efficiency!

- the whole **cache** can be considered as a **defaultdict** in Python, defaulting to computing and storing the executionPlan.
 - But it's more than just naive key-lookups -- consider A join B and B join A:
 DFs are in different order but should yield identical results. There should be a "key interpreter/canonicalizer" that is aware of this (perhaps by a "sort tuple" procedure, as seen in page 11).
- There's a **limit** (e.g. capacity of your memory) to caches, so:
 - Manually, you should:
 - only cache things you gonna **reuse**
 - remember to unpersist when you are done with it
 - be aware of constantly updating data source -- validity of cached DFs may expire and thus should be dropped.

- if by manual selection the cached data is still exceeding the memory's capacity, the computing platform may intervene and prioritize cached items:
 - either by dropping Least Frequently Used (LFU) items
 - or dropping Least Recently Used (LRU) items.

(code demonstrated on page 13, using another dictionary to store last access time)

- Difference between caching and memoizing: (source)
 - "memoization" is "caching the result of a **deterministic** function" that can be reproduced at any time given the same function and inputs.
 - "Caching" includes basically **any output-buffering** strategy, whether or not the source value is reproducible at a given time. In fact, caching is also used to refer to *input* buffering strategies, such as the write-cache on a disk or memory. So it is a **much more general** term.
- memoization
 - a key concept in **dynamic programming**

process many different tasks in 'parallel' (3/12/2018)

- Task scheduling (Multitasking/task switching)
 - key concepts: (<u>source</u>)
 - **Sync:** Blocking operations.
 - **Async:** Non blocking operations.
 - **Concurrency:** Making progress together.
 - **Parallelism:** Making progress in parallel. *Parallelism* ∈ *Concurrency*.
 - Concurrency in Python
 - Manual approach: data=operator(data) approach using queue
 - Automatic approach (Great reading: <u>source</u>)
 - multiprocessing populates multiple processes
 - threading uses threads
 - concurrent.futures is a simpler interface to those two above
 - asyncio
- Random exploration via genetic algorithms
 - randomness + parallelism
 - consider it a non-exhausive search -- by using random sampling.
 - also this makes it a good candidate to make approximate algorithms

Search and constraint solvers: find an item, a parameter, etc. that maximizes an objective"

- Planning consists of:
 - 1. Defining start and goal states
 - 2. Defining a sequence of actions and constraints about how they can be used
 - 3. Defining a search strategy
 - 4. Finding pruning methods
- pruning
 - forward chaining
 - **backward chaining** -- allows for more advanced pruning, such as "branch-and-bound pruning"

@3/14/2018 - Unsupervised data analysis

Principal Component Analysis (PCA) -- Group similar features together (roughly)

- PCA can be viewed as: A rotation to a new coordinate system (a.k.a. "a projection to **a new space**") to **maximize the variance** in the new coordinates.
- PCA is scale-variant -- rescaling data w.r.t. any feature will change PCA result. Also, center ("mean") of data should really be at origin.
 - Thus, **standardization** is important.
 - but be aware of log-scaled raw features!
- Realized by computing the covariance matrix.
 - Its eigenvectors are our principal components (from original space to PCA-ed space).
 - To compute for them: use single value decomposition (SVD) with fast algorithms like "randomized SVD".
 - Its eigenvalues are the covariance explained. Use eigenvectors in descending order of this!
- Excessive principal compoenents are merely capturing noise in the data.
- compare with: t-distributed Stochastic Neighbor Embedding (t-SNE)
 - non-deterministic (each run of t-SNE, even on the same set of data, can give different results)
 - Local-focused
 - coordinates mean nothing. Information is all in proximity.
 - which leads to the topic of clustering...

Clustering -- Group similar items together

• K-Means

- Minimizes within-cluster Sum of Squared Errors (SSE) (a.k.a. distortion function).
- Non-convex.
- K-means++: Initializes centroids as far away from each other as possible.
- K-means in SQL (see .sql file)
- pyspark.mllib.clustering has k-means packaged: KMeans, KMeansModel.
- Elbow method for choosing the right number of clusters
- alternative to centroid is the "medoid": while centroid is the numerical average for continuous values, themedoid is for categorical features -- choosing the most representative/frequent point.
- hierichical clustering
 - major difference with k-means: # of clusters is determined iteratively, rather than specified upfront.
 - two approaches:
 - agglomeative (a.k.a. AHC or HAC): start with single-item clusters and keep merging closest items. <- we will focus on this
 - Divisive: start with one cluster containing all datapoints. keep dividing till all clusters are single-points.
 - distance between clusters
 - **single** linkage:
 - compute distance between the most similar members for each pair of clusters.
 - AHC: Merge the clusters with the **smallest** distance.
 - Complete linkage:
 - Compute distance between the most different members for each pair of clusters.
 - AHC: Merge the clusters with the **smallest** distance.
 - implementation in spark
 - spark.mllib contains divisive, not agglomeative
 - UBer has their own implementation of AHC
 - pros and cons
 - Pros:
 - plots dendrograms -- helps taxonomy
 - can stop at any number of clusters at will
 - Cons:
 - Does not scale well
 - (K-means too) assumes clusters have **spherical shape**
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 - each point is assigned to one label: (great read: <u>source</u>)

- A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.
- A noise **point** is any **point** that is not a core **point** nor a **border point**.
- Handles non-spherically-clustered datasets!
- Noise tolerant.

How to they compare - time complexity:

(n: # of points; d: # of dimensions; k: # of clusters.)

- k-means: d * n * k * # of iterations * # of restarts
- Agglomerative: >dn^2
- DBSCAN: depends on thregion size; suffers from thecurse of dimensionality

Other Techniques

- Locally sensitive hashing: ...
- MinHash: Hashing for Jaccard Distance

Supervised Learning

@03/26/2018 - decision trees

- types of supervised learning
 - **classification**: y is categorical
 - **Regression**: y is continuous
- Model may be:
 - Parametric: a known funcgional form -- we are here to estimate values
 - Linear and logistic regression
 - Non-parametric: no functional formv assumed
 - decision tres and random forests
 - boosted models
 - semi-parametric: so many parameters as to be effectively non-parametric
 - e.g. neural networks
- Decision trees
 - can be used for feature selection
 - splits first on the option that provides the highest Information Gain

- The more uniformly distributed the data is, the lower a Gini Index it has, the higher an Entropy it has.
- very susceptible to overfitting
 - if features are highly correlated, use PCA first
 - balance training data amount for each label
 - limit maximum depth
 - keep minimum number of samples for a split from being too low
 - prune after training
- Ensemble version: random forest
 - bootstrap -- sample (with replacement) for each member (individual decision trees).
 - majority vote (or average) members' outputs.
- Variation: extremely random forests
 - Not only training data is randomly sampled,

instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the **best of these randomlygenerated thresholds** is picked as the splitting rule. (<u>source</u>)

- d-tree can tell repetitive features and mark them "less important".
- summary
 - decision trees
 - Fast to train
 - easily interpretable
 - random forests
 - highly accurate
 - does not require hyperparameter search
 - both
 - scale **invariant** -- these models are non-parametric!
 - handles both numerical and categorical data

@03/28/2018 - regression, boosting and SVMs

Regression

- **Parametric or not?** Linear regression models, and therefore logisitic regression too, are examples of parametric models.
- **A Word On Regularization**: No matter L2 regularization ("ridge"), L1 regression ("lasso") or PCR, they all decides for each feature how much it should be suppressed before fed into a linear regression model.

The Linear Regresion Family

- Linear Regression
 - minimizes root mean squared error (RMSE)
 - in practice, the sqrt() is omitted minimizes "MSE".
 - brightside: it has a closed-form solution, but there's potential problem:
 - space complexity: $X^T \cdot X$ can be big -- n^2 . May not fit in memory.
 - time complexity: $n \cdot d^2$ (d is the # of features) -- can be big.
 - If d>n, then the X-inversion step will hit a singular point error and fail.
 - Scale invariant -- needs no normalization
- **ridge regression** := Linear regression + $\lambda w^T \cdot w$
 - Minimizes MSE + L2 penalty
 - a.k.a. "ridge", "L2 regularization", etc.
 - idea: shrinks all the weights a little -- just shrink, not making any feature's weight go to zero.
 - NOT LONGER scale invariant
- **Elastic net** := linear regression + $\lambda_1 w^T \cdot w$ + λ_2 L1 penalty
 - L1 penalty is also called the "lasso".
 - Idea: L1 can drive least-important features' weights to zero.
 - now you have two hyperparameters for regulation: λ_1 and λ_2

Principal Component Regression

- 1. Do PCA on X.
- 2. Project X onto the PCXA loadings: $T = X \cdot W$ (nxk = nxp * pxk)
- 3. Use T as training data instead of X. Usually linear regression too.
- 4. To predict using this PCR model, project test examples to W, then feed into the "linear regression" sub-model.
- Often used in computational linguistics.
- Different from the ones introduced above: PCR can be called a "semi-supervised learning algorithm"
 - PCA part is unsupervised
 - actual regression part is supervised.
- just like PCA -- not scale-invariant

Logistic Regression := linear regression + filtering using logistic function + binarizing results to 0&1

• for binary labels (thus for classfication, rather than prediction)

• Since the output will be binarized to 0&1, the value before this binarization is considered to be the probability -- probability estimate: $\sigma(w^T \cdot X)$

Boosting

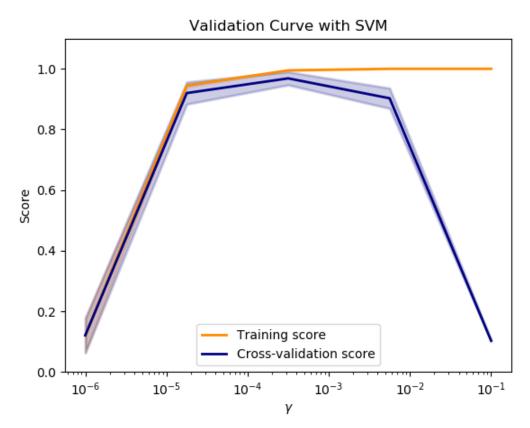
- train a series of dumb classifiers, each one focusing more on the examples mis-classified by the previous one.
- is an ensemble method

SVM

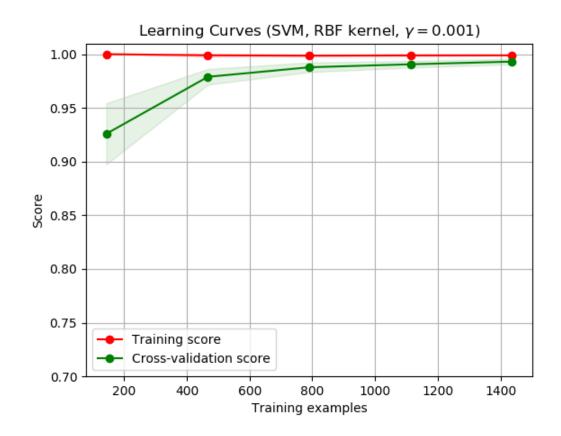
- also for classification.
- maximizing margin...
- "Soft margin": we can trade-off between margin width and violations of the border.
- Usually uses "hinge loss" -- don't care about correctly-classified examples.
- kernels feature engineering (not covered)
 - linear
 - polynomial (order can be configured)
 - radial basis (a.k.a. gaussian)
- when use a kernel, not scale-invariant.

@04/02/2018: Tuning and evaluating classifiers

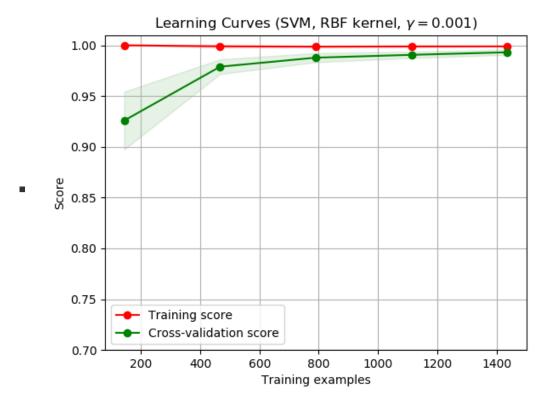
- Complexity we want to find the optimal complexity that balances the training error and test error -- avoid underfitting and overfitting.
 - visualize with learning curves.
- k-fold cross validation
 - Holdout sets: part of training data held out and used like a test set.
- some curves:
 - validation curve: x-axis is the value of hyper-parameter; y-axis is the score.



- take the peak.
- learning curve: x-axis is the percentage.



- Validation/test score should be also high. Don't let it drop -- it would be overfitting.
- ROC curves:



- confusion matrix and all of those performace metrics. (probably omittable)
 - accuracy is often the wrong measure.
 - some are: error, precision, recall, F1 score.

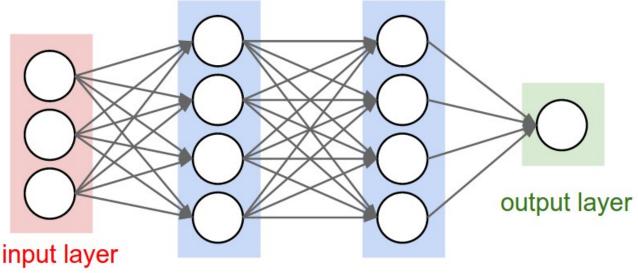
@4/4/2018 - Artificial Neural Networks

- gradient descent
 - analytical or numerical derivative
 - variations in terms of training data granuity:
 - (vanilla) gradient descent requires all training data to be loaded to compute the gradient.
 - stochastic gradient descent calculates the gradient on a per-example basis, allowing for online-learning.
 - Mini-batch: updates the model every k observations -- a hybrid approach to the two above.
 - Can get caught in **local minima** -- alternative, **simulated annealing**, uses randomness.
 - according to a "cooling schedule", is initially more likely to randomly jump.
 - still no gurantee, but lready less susceptable to local minima.
- logistic regression is actually a basic "artificial neuron"

- activation function
 - uses sigmoid function as "model" -- in this sense, it's similar to logisitic regression.
 - Alternative to sigmoid function if you want a **hard classifier**: <u>heaviside function</u>.
- A neuron can take multiple inputs -- just like thsoe features inputed in logisitic regression.
 - with an extra "always-on" (i.e. always emitting 1) input, called "bias". Its effect to the neuron's decision is controlled by its associated weight instead of its value itself.
 - regularization is NOT applied on it.
- η is the learning rate.
- A perceptron is a single layer of many such neurons.
 - consider this as multiple regressions running at once (each neuron being one).
 - still learns a linear boundary -- gurantees conergence if only the training data is linearly seperable.
 - to deal with non-linearly-separable data,
 - SVM uses kernels
 - neural nets use extra layers. See below.
 - (doesn't mean that technically we cannot use kernels with perceptrons)
- deeper networks are just models of multiple layers as such -- feed-forward networks
 - can deal with non-linearly-separable data.
 - **structure:** Input layer -> hidden layer(s) -> output layer
 - each layer can have multiple neurons.
 - activation function: usually ReLU ("rectified linear") here.

@4/9/2018 - Convolutional Neural Networks

Great reading: source.



hidden layer 1 hidden layer 2

- for images
- CNN uses local receptive field
- types of layers
 - **Convolution** connects the *receptive field* to a neuron in the next layer
 - often with overlap ("strides"). "Stripe" is the steplength.
 - Will hit border of image -- needs zero-padding (how much? also a hyperparam)
 - kernels in CNN are called "filters".
 - The spatial extent of this connectivity is a hyperparameter called the *receptive field* of the neuron (equivalently this is the filter size).
 - **Pooling** does aggregation (often: max)
 - pooling ("downsampling"): most often max-pooling, etc.
 - Detection uses sigmoid or RLU
 - usually uses ReLU as activation function -- Cheaper to calc deriv
- back propagation.
- ways of regularization:
 - L2
 - Max norm (L∞)
 - Early stopping
 - **Dropout**: randomly dropping out connections between layers (?).
- techniques about Gradient descent
 - Gradient descent
 - stochastic

- gradient clipping
- Minibatch
- Momentum
- Learning rate adaptation
- learning rate adaption:
 - Adagrad: make the learning rate depend previous changes in *each* weight
- Semi-supervised learning

@04/11/2018 - Time Series

- What makes a TS different from say a regular regression problem?
 - 1. It is **time dependent**. So the basic assumption of a linear regression model that the observations are independent doesn't hold in this case.
 - 2. Along with an increasing or decreasing trend, most TS have some form of **seasonality trends**, i.e. variations specific to a particular time frame. For example, if you see the sales of a woolen jacket over time, you will invariably find higher sales in winter seasons.
- some techniques
 - use a moving average to smooth out short-term fluctuations and highlight longer-term trends or cycles.
 - use log() if data appears to be exponential -- this can give something showing more linearity -- easier to deal with.
- Time series are **stationary** if they do not have trend or seasonal effects.
 - Summary statistics (such as the mean or variance) calculated over stationary time series are consistent over time.
 - Stationarity is an assumption underlying many statistical procedures used in time series analyses, so non-stationary data is often transformed to become stationary. How to make a time series stationary:
 - Estimate and eliminate trend
 - Transformation e.g. take log, which penalizes higher values more than smaller ones.
 - **Aggregation** take average for a time period like monthly/weekly averages
 - **Smoothing** take rolling (moving) averages.
 - "weighted moving average" gives more recent values a higher weight than older values
 - In an "exponentially weighted moving average", weights are assigned to all the previous values with a decay factor.
 - No data is left beind -- all taken in to consideration.

- **Polynomial fitting** fit a regression model
- Remove trend and seasonality
 - Differencing taking the difference with a particular time lag
 - Decomposition modeling both trend and seasonality and removing them from the model.
- Converting a time series from one frequency to another
 - Downsampling higher to lower frequency
 - Upsampling lower to higher
- Statistical test: Augmented Dickey-Fuller (ADF)
 - Tests the **null hypothesis** that the time-series is non-stationary.
 - The more negative the Test Statistic is, the stronger the rejection of the hypothesis.
- how to make predictions with time series data
 - Models
 - Auto-Regressive model AR(p)
 - $x(t) = c0 + ct-1 x(t-1) + ct-2 x(t-2) + + ct-p x(t-p) + É\sqrt{t}$
 - Moving Average model (MA(q))
 - x(t) = c0 + c t-1 e(t-1) + c t-2 e(t-2) +....+ c t-q e(t-q) + É√t
 - $e(t) = É\sqrt{t} = error in prediction at time t$
 - Auto-Regressive Integrated Moving Averages (ARIMA) forecasting
 - linear equation based three parameters, (p, d, q)
 - **p auto-regressive (AR) terms** (a.k.a. "lags of dependent variable"). For instance if p is 5, the predictors for x(t) will be x(t-1)....x(t-5).
 - q moving average terms (MA) (a.k.a. "lagged forecast errors in prediction equation"). For instance if q is 5, the predictors for x(t) will be e(t-1)....e(t-5) where e(i) is the difference between the moving average at ith time and actual value.
 - d non-seasonal differences
 - How to determine p and q?
 - Plot autocorrelation functions and partial autocorrelation functions and see when they cross an upper confidence interval.
 - For this data, p=q=2.
 - technique: **Differencing**

0

- y(t) = x(t) x(t-1), Then fit the model on y(t)
 - Makes the process more stationary

@04/16/2018 - TensorFlow

- TensorFlow is based on a **Computation Graph** executed in parallel.
- All data are represented as tensors -- analogy to columns.
- Two sets of APIs:
 - one resembles sklearn
 - to initialize a classifier, you have to specify feature columns -- different from sklearn.
 - one lower level
- TensorFlow column datatypes (tf.contrib.layers.[...])
 - for real-valued features: real_valued_column
 - for categorical features:
 - If you know all possible values: use sparse_column_with_keys.
 - If you cannot iterate over all categories (or simply want to allocate ordinal values to categorical values on the fly): use [...]_hash_bucket.
 - choose bucket amount wisely -- balance between hashing collisions and memory consumption
 - use numerical feature as categorical: bucketized_column
 - For feature combinations: CrossedColumns

Distributed TensorFlow

- Master nodes know the whole Computation Graph.
- Worker nodes know only the operation it's assigned with.
 - worker 0 may be the "parameter server" and hold mutable data (weights, biases, etc.)
 - worker 1 may hold the training data and compute some operations.
- Data can be stored on a Spark cluster (i.e. in HDFS) and **streamed** to the TensorFlow cluster. Yahoo did this: TensorFlowOnSpark.

Recurrent Neural Networks (RNN) - Handles Time Series

- two approaches to time series
 - use a standard neural net or CNN
 - such as a nonlinear AR(k) model
 - use a RNN
 - generalize HMMs or Linear Dynamical Systems
 - only choice if inputs are of varying lengths

- See **standard hidden markov model**: each "stage" takes the previous result as part of input.
- variations
 - Long Short Term Memory (LSTM)
 - gated RNNs
 - stacked RNNs
- can be used...
 - ... to predict the next observation given past observations (like an ARIMA model)
 - ... to map one sequence to another sequence ("encoder-decoder" structure)
 - translates sentences from one language to another
 - chatbot
 - auto-caption image

@04/18/2018 - Online Learning

- Online learning methods
 - Least mean squares (LMS)
 - Online regression -- L2 error
 - Perceptron
 - Idea
 - if we get it right: no change;
 - if we got it wrong: $ec{w}_{i+1} = ec{w}_i + ec{y}_i ec{x}_i.$
 - This makes w look more like \vec{x}_i , thus the hyperplane defined by \vec{w} is more orthogonal to this example of \vec{x}_i .
 - In practice, we use averaged perceptrons -- a cheap approximation to voted perceptons.
 - Return as its final model the average of all intermediate models
 - sounds like a ensemble learning, but actually it just keeps one single, averaged model at any time.
 - Better than voted perceptons: run-time nearly as fast as single percepton.
 - can use kernels.
 - variation: Online SVM -- Hinge loss
 - Online K-means
- different from Neural nets: we look at each example and throw it away.

Analyzing Real-Time Data Streams

• Data Streams

- may not be peroidic
- update most often have a delay from actual event
- timestamp reported may...
 - not be precise (time sync server problem, etc.)
 - has timezone problem (sometimes needed, sometimes to remove)
- consider operations on data streams to be "continuous queries".
 - outputs can also be considered data streams
 - types
 - cumulative operations -- performed on all data streamed
 - Rolling or windowed operations (e.g. a "last-two-minute window".)
 - tumbling windows: no overlap
 - sliding windows: move a fixed length every step (like a queue)
 - sliding + partitions windows: shards data according to key to two sliding windows
- architechture
 - lambda architechture
 - Apache Spark Streaming
 - o ...

@04/23/2018 - Stream Processing Systems

(a wrap-up of streaming processing)

- Apache Spark
 - component:
 - data streams exposed as ever-changing dataframes
 - We define **windows** over streams
 - "joins/merges" make sense on windows, not much on streams themselves.
 - Based on "micro batching" periodic invocations of Spark Engine on batches of tuples
 - To process:
 - StreamingContext gets started
 - awaitTermination() is run
 - Can process whatever is in the DataStream as a DataFrame
 - Can run countByWindow() etc. to get time-based or tuple-based windows
- Apache Storm (and Heron): distributed streams among distributed modules

• components

- **spout**: interfaces with the world, **produce** streams
 - emits <u>lists of tuples</u>
- **bolt**: receive streams, optionally producing streams + read/update states.
- <u>structure</u>: spouts and bolts are usually pipelined. They can also be **stacked** (for distributed computing).
- promises robust execution (even when compared to Spark)
- can be used to mimic MapReduce structure,
- To Storm, streamparse is what pyspark is to Spark.

Visualization

- Get a **holistic** sense of **data** as we load + analyze it
 - histograms, scatter plots, correlations, time series
- Understand our algorithms' performance
 - learning curve, validation curve, ROC graph
- Present information as part of a **report** or "**dashboard**"
 - figures illustrating performance (in the economic sense, etc.)
- Potential Kinds of Plots
 - Exploratory graphics for the data scientist. Want to create rapidly, iterate,
 - Communication graphics for you to communicate your findings, Again, iteration is important
- "Grammar of Graphics"
 - Basis of R's ggplot2
 - Python port: ggplot
 - Divides plots into:
 - layers
 - data
 - aesthetic mappings
 - geometric objects
 - statistical transformations
 - position adjustments
 - scales
 - coordinate system
 - facets (groups)
- more advanced visualization in python

- seaborn : Builds upon matplotlib with a focus on statistical plots
- lightning + d3.js: "Dashboards"
 - requires server -- Jupyter is also a web server

@04/25/2018 - Data Science Ethnics

- Why do people do the right thing?
 - Morality (Ethnics)
- Enthical principles
 - Autonomy: The right to control your data, possibly via surrogates
 - **Informed Consent**: You should explicitly approve use of your data based on understanding
 - required in human-subjects research
 - must understand what is being done
 - must voluntarily consent to the experiment
 - must have the right to withdraw consent at any time
 - but no one requires them in "ordinary conduct of business"
 - consequently we are constantly subject to tests such as A/B tests.
 - **Beneficence**: People using your data should do it for your benefit
 - or at least **Non-maleficence**: Do no harm
- **Differential privacy** aims to maximize the accuracy of queries from statistical databases while minimizing the chances of identifying its records.
- we want results that are ...
 - reproducible
 - fair