

8 - Algos.pptx @ 2/28: Three Common “Design Patterns” in Big Data Analysis
Caching / memo(r)ization: process a lot of data that repeats/‘partly overlaps’
process many different tasks in ‘parallel’ (3/12/2018)
Search and constraint solvers: find an item, a parameter, etc. that maximizes an objective”

@3/14/2018 - Unsupervised data analysis
Principal Component Analysis (PCA) -- Group similar features together (roughly)
Clustering -- Group similar items together

How to they compare - time complexity:
Other Techniques

Supervised Learning
@03/26/2018 - decision trees
@03/28/2018 - regression, boosting and SVMs

Regression
The Linear Regresion Family
Principal Component Regression
Logistic Regression := linear regression + filtering using logistic function + binarizing results to
0&1

Boosting
SVM

@04/02/2018: Tuning and evaluating classifiers
@4/4/2018 - Artificial Neural Networks

@4/9/2018 - Convolutional Neural Networks
@04/11/2018 - Time Series
@04/16/2018 - TensorFlow

Distributed TensorFlow
Recurrent Neural Networks (RNN) - Handles Time Series

@04/18/2018 - Online Learning
Analyzing Real-Time Data Streams

@04/23/2018 - Stream Processing Systems
Visualization
@04/25/2018 - Data Science Ethnics

Tensorflow supports "half precision" floats -- float16.

Float32 is called "full precision"/"single precision".
Float64: "double precision".

Shuffling = re-sharding = ...

8 - Algos.pptx @ 2/28: Three Common
“Design Patterns” in Big Data Analysis

Caching / memo(r)ization: process a lot of data that
repeats/‘partly overlaps’

Caches

In PySpark:

pyspark's .cache() : useful even just for caching a file-loading process.

Spark gives 5 types of Storage level

MEMORY_ONLY

MEMORY_ONLY_SER

MEMORY_AND_DISK

MEMORY_AND_DISK_SER

DISK_ONLY

cache() will use MEMORY_ONLY . If you want to use something else, use
persist(StorageLevel.<*type*>) .

By default persist() will store the data in the JVM heap as unserialized
objects. (source)

It's a trade-off between:

IO-efficient and re-useable
Redundant but parallel

Sometimes you may prefer parallelism more than IO-efficiency!

the whole cache can be considered as a defaultdict in Python, defaulting to computing
and storing the executionPlan.

But it's more than just naive key-lookups -- consider A join B and B join A :
DFs are in different order but should yield identical results. There should be a
"key interpreter/canonicalizer" that is aware of this (perhaps by a "sort tuple"
procedure, as seen in page 11).

There's a limit (e.g. capacity of your memory) to caches, so:

Manually, you should:

only cache things you gonna reuse
remember to unpersist when you are done with it
be aware of constantly updating data source -- validity of cached DFs may
expire and thus should be dropped.

https://stackoverflow.com/a/43231985/1147061

if by manual selection the cached data is still exceeding the memory's capacity, the
computing platform may intervene and prioritize cached items:

either by dropping Least Frequently Used (LFU) items
or dropping Least Recently Used (LRU) items.

(code demonstrated on page 13, using another dictionary to store last access time)

Difference between caching and memoizing: (source)

"memoization" is "caching the result of a deterministic function" that can be reproduced
at any time given the same function and inputs.
"Caching" includes basically any output-buffering strategy, whether or not the source
value is reproducible at a given time. In fact, caching is also used to refer to input
buffering strategies, such as the write-cache on a disk or memory. So it is a much more
general term.

memoization

a key concept in dynamic programming

process many different tasks in ‘parallel’ (3/12/2018)

Task scheduling (Multitasking/task switching)

key concepts: (source)

Sync: Blocking operations.
Async: Non blocking operations.
Concurrency: Making progress together.
Parallelism: Making progress in parallel. Parallelism Concurrency.

Concurrency in Python

Manual approach: data=operator(data) approach - using queue

Automatic approach (Great reading: source)

multiprocessing populates multiple processes
threading uses threads
concurrent.futures is a simpler interface to those two above
asyncio

Random exploration via genetic algorithms

randomness + parallelism
consider it a non-exhausive search -- by using random sampling.
also this makes it a good candidate to make approximate algorithms

Search and constraint solvers: find an item, a
parameter, etc. that maximizes an objective”

https://stackoverflow.com/a/6469677/1147061
http://masnun.rocks/2016/10/06/async-python-the-different-forms-of-concurrency/
http://masnun.rocks/2016/10/06/async-python-the-different-forms-of-concurrency/

Planning consists of:

1. Defining start and goal states
2. Defining a sequence of actions and constraints about how they can be used
3. Defining a search strategy
4. Finding pruning methods

pruning

forward chaining
backward chaining -- allows for more advanced pruning, such as "branch-and-bound
pruning"

@3/14/2018 - Unsupervised data analysis

Principal Component Analysis (PCA) -- Group similar
features together (roughly)

PCA can be viewed as: A rotation to a new coordinate system (a.k.a. "a projection to a new
space") to maximize the variance in the new coordinates.

PCA is scale-variant -- rescaling data w.r.t. any feature will change PCA result. Also, center
("mean") of data should really be at origin.

Thus, standardization is important.

but be aware of log-scaled raw features!

Realized by computing the covariance matrix.

Its eigenvectors are our principal components (from original space to PCA-ed space).

To compute for them: use single value decomposition (SVD) with fast algorithms like
"randomized SVD".

Its eigenvalues are the covariance explained. Use eigenvectors in descending order of
this!

Excessive principal compoenents are merely capturing noise in the data.

compare with: t-distributed Stochastic Neighbor Embedding (t-SNE)

non-deterministic (each run of t-SNE, even on the same set of data, can give different
results)
Local-focused
coordinates mean nothing. Information is all in proximity.
which leads to the topic of clustering...

Clustering -- Group similar items together

K-Means

Minimizes within-cluster Sum of Squared Errors (SSE) (a.k.a. distortion function).
Non-convex.
K-means++: Initializes centroids as far away from each other as possible.
K-means in SQL (see .sql file)
pyspark.mllib.clustering has k-means packaged: KMeans, KMeansModel.
Elbow method for choosing the right number of clusters
alternative to centroid is the "medoid": while centroid is the numerical average for
continuous values, themedoid is for categorical features -- choosing the most
representative/frequent point.

hierichical clustering

major difference with k-means: # of clusters is determined iteratively, rather than
specified upfront.

two approaches:

agglomeative (a.k.a. AHC or HAC): start with single-item clusters and keep merging
closest items. <- we will focus on this
Divisive: start with one cluster containing all datapoints. keep dividing till all clusters
are single-points.

distance between clusters

single linkage:

compute distance between the most similar members for each pair of
clusters.
AHC: Merge the clusters with the smallest distance.

Complete linkage:

Compute distance between the most different members for each pair of
clusters.
AHC: Merge the clusters with the smallest distance.

implementation in spark

spark.mllib contains divisive, not agglomeative
UBer has their own implementation of AHC

pros and cons

Pros:

plots dendrograms -- helps taxonomy
can stop at any number of clusters at will

Cons:

Does not scale well
(K-means too) assumes clusters have spherical shape

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

each point is assigned to one label: (great read: source)

https://www.cse.buffalo.edu/~jing/cse601/fa12/materials/clustering_density.pdf

A point is a core point if it has more than a specified number of points (MinPts)
within Eps—These are points that are at the interior of a cluster.
A border point has fewer than MinPts within Eps, but is in the neighborhood of a
core point.
A noise point is any point that is not a core point nor a border point.

Handles non-spherically-clustered datasets!

Noise tolerant.

How to they compare - time complexity:

(n: # of points; d: # of dimensions; k: # of clusters.)

k-means: d * n * k * # of iterations * # of restarts
Agglomerative: >dn^2
DBSCAN: depends on thregion size; suffers from thecurse of dimensionality

Other Techniques

Locally sensitive hashing: ...
MinHash: Hashing for Jaccard Distance

Supervised Learning

@03/26/2018 - decision trees

types of supervised learning

classification: y is categorical
Regression: y is continuous

Model may be:

Parametric: a known funcgional form -- we are here to estimate values

Linear and logistic regression

Non-parametric: no functional formv assumed

decision tres and random forests
boosted models

semi-parametric: so many parameters as to be effectively non-parametric

e.g. neural networks

Decision trees

can be used for feature selection

splits first on the option that provides the highest Information Gain

The more uniformly distributed the data is, the lower a Gini Index it has, the higher an
Entropy it has.

very susceptible to overfitting

if features are highly correlated, use PCA first

balance training data amount for each label

limit maximum depth

keep minimum number of samples for a split from being too low
prune after training

Ensemble version: random forest

bootstrap -- sample (with replacement) for each member (individual decision trees).
majority vote (or average) members' outputs.

Variation: extremely random forests

Not only training data is randomly sampled,

instead of looking for the most discriminative thresholds, thresholds are
drawn at random for each candidate feature and the best of these randomly-
generated thresholds is picked as the splitting rule. (source)

d-tree can tell repetitive features and mark them "less important".

summary

decision trees

Fast to train
easily interpretable

random forests

highly accurate
does not require hyperparameter search

both

scale invariant -- these models are non-parametric!
handles both numerical and categorical data

@03/28/2018 - regression, boosting and SVMs

Regression

Parametric or not? Linear regression models, and therefore logisitic regression too, are
examples of parametric models.
A Word On Regularization: No matter L2 regularization ("ridge"), L1 regression ("lasso") or
PCR, they all decides for each feature how much it should be suppressed before fed into a
linear regression model.

http://scikit-learn.org/stable/modules/ensemble.html

The Linear Regresion Family

Linear Regression

minimizes root mean squared error (RMSE)

in practice, the sqrt() is omitted - minimizes "MSE".

brightside: it has a closed-form solution, but there's potential problem:

space complexity: can be big -- . May not fit in memory.
time complexity: (d is the # of features) -- can be big.

If d>n, then the X-inversion step will hit a singular point error and fail.

Scale invariant -- needs no normalization

ridge regression := Linear regression +

Minimizes MSE + L2 penalty

a.k.a. "ridge", "L2 regularization", etc.

idea: shrinks all the weights a little -- just shrink, not making any feature's weight go to
zero.

NOT LONGER scale invariant

Elastic net := linear regression + + L1 penalty

L1 penalty is also called the "lasso".
Idea: L1 can drive least-important features' weights to zero.
now you have two hyperparameters for regulation: and

Principal Component Regression

1. Do PCA on X.
2. Project X onto the PCXA loadings: (nxk = nxp * pxk)
3. Use T as training data instead of X. Usually linear regression too.
4. To predict using this PCR model, project test examples to W, then feed into the "linear

regression" sub-model.

Often used in computational linguistics.

Different from the ones introduced above: PCR can be called a "semi-supervised learning
algorithm"

PCA part is unsupervised
actual regression part is supervised.

just like PCA -- not scale-invariant

Logistic Regression := linear regression + filtering using logistic function +
binarizing results to 0&1

for binary labels (thus for classfication, rather than prediction)

Since the output will be binarized to 0&1, the value before this binarization is considered to be
the probability -- probability estimate:

Boosting

train a series of dumb classifiers, each one focusing more on the examples mis-classified by
the previous one.
is an ensemble method

SVM

also for classification.

maximizing margin...

"Soft margin": we can trade-off between margin width and violations of the border.

Usually uses "hinge loss" -- don't care about correctly-classified examples.

kernels - feature engineering (not covered)

linear
polynomial (order can be configured)
radial basis (a.k.a. gaussian)

when use a kernel, not scale-invariant.

@04/02/2018: Tuning and evaluating classifiers

Complexity - we want to find the optimal complexity that balances the training error and test
error -- avoid underfitting and overfitting.

visualize with learning curves.

k-fold cross validation

Holdout sets: part of training data held out and used like a test set.

some curves:

validation curve: x-axis is the value of hyper-parameter; y-axis is the score.

take the peak.

learning curve: x-axis is the percentage.

Validation/test score should be also high. Don't let it drop -- it would be overfitting.

ROC curves:

confusion matrix and all of those performace metrics. (probably omittable)

accuracy is often the wrong measure.
some are: error, precision, recall, F1 score.

@4/4/2018 - Artificial Neural Networks

gradient descent

analytical or numerical derivative

variations in terms of training data granuity:

(vanilla) gradient descent requires all training data to be loaded to compute the
gradient.
stochastic gradient descent calculates the gradient on a per-example basis,
allowing for online-learning.
Mini-batch: updates the model every observations -- a hybrid approach to the
two above.

Can get caught in local minima -- alternative, simulated annealing, uses randomness.

according to a "cooling schedule", is initially more likely to randomly jump.
still no gurantee, but lready less susceptable to local minima.

logistic regression is actually a basic "artificial neuron"

activation function

uses sigmoid function as "model" -- in this sense, it's similar to logisitic regression.
Alternative to sigmoid function if you want a hard classifier: heaviside function.

A neuron can take multiple inputs -- just like thsoe features inputed in logisitic regression.

with an extra "always-on" (i.e. always emitting) input, called "bias". Its effect to the
neuron's decision is controlled by its associated weight instead of its value itself.

regularization is NOT applied on it.

 is the learning rate.

A perceptron is a single layer of many such neurons.

consider this as multiple regressions running at once (each neuron being one).

still learns a linear boundary -- gurantees conergence if only the training data is linearly
seperable.

to deal with non-linearly-separable data,

SVM uses kernels

neural nets use extra layers. See below.

(doesn't mean that technically we cannot use kernels with perceptrons)

deeper networks are just models of multiple layers as such -- feed-forward networks

can deal with non-linearly-separable data.

structure: Input layer -> hidden layer(s) -> output layer

each layer can have multiple neurons.

activation function: usually ReLU ("rectified linear") here.

@4/9/2018 - Convolutional Neural Networks

Great reading: source.

for images

CNN uses local receptive field

types of layers

Convolution connects the receptive field to a neuron in the next layer

often with overlap (“strides”). "Stripe" is the steplength.

Will hit border of image -- needs zero-padding (how much? also a hyperparam)

kernels in CNN are called "filters".

The spatial extent of this connectivity is a hyperparameter called the
receptive field of the neuron (equivalently this is the filter size).

Pooling does aggregation (often: max)

pooling ("downsampling"): most often max-pooling, etc.

Detection uses sigmoid or RLU

usually uses ReLU as activation function -- Cheaper to calc deriv

back propagation.

ways of regularization:

L2
Max norm (L∞)
Early stopping
Dropout: randomly dropping out connections between layers (?).

techniques about Gradient descent

Gradient descent

stochastic

http://cs231n.github.io/convolutional-networks/

gradient clipping

Minibatch

Momentum

Learning rate adaptation

learning rate adaption:

Adagrad: make the learning rate depend previous changes in each weight

Semi-supervised learning

@04/11/2018 - Time Series
What makes a TS different from say a regular regression problem?

1. It is time dependent. So the basic assumption of a linear regression model that the
observations are independent doesn’t hold in this case.

2. Along with an increasing or decreasing trend, most TS have some form of seasonality
trends, i.e. variations specific to a particular time frame. For example, if you see the sales
of a woolen jacket over time, you will invariably find higher sales in winter seasons.

some techniques

use a moving average to smooth out short-term fluctuations and highlight longer-term
trends or cycles.
use log() if data appears to be exponential -- this can give something showing more
linearity -- easier to deal with.

Time series are stationary if they do not have trend or seasonal effects.

Summary statistics (such as the mean or variance) calculated over stationary time series
are consistent over time.

Stationarity is an assumption underlying many statistical procedures used in time series
analyses, so non-stationary data is often transformed to become stationary. How to
make a time series stationary:

Estimate and eliminate trend

Transformation – e.g. take log, which penalizes higher values more than
smaller ones.

Aggregation – take average for a time period like monthly/weekly averages

Smoothing – take rolling (moving) averages.

“weighted moving average” gives more recent values a higher weight than
older values

In an “exponentially weighted moving average”, weights are assigned to
all the previous values with a decay factor.

No data is left beind -- all taken in to consideration.

Polynomial fitting – fit a regression model

Remove trend and seasonality

Differencing – taking the difference with a particular time lag
Decomposition – modeling both trend and seasonality and removing them
from the model.

Converting a time series from one frequency to another

Downsampling – higher to lower frequency
Upsampling – lower to higher

Statistical test: Augmented Dickey-Fuller (ADF)

Tests the null hypothesis that the time-series is non-stationary.
The more negative the Test Statistic is, the stronger the rejection of the hypothesis.

how to make predictions with time series data

Models

Auto-Regressive model AR(p)

x(t) = c0 + ct-1 x(t-1) + ct-2 x(t-2) +….+ ct-p x(t-p) + É√t

Moving Average model (MA(q))

x(t) = c0 + c t-1 e(t-1) + c t-2 e(t-2) +….+ c t-q e(t-q) + É√t
e(t) = É√t = error in prediction at time t

Auto-Regressive Integrated Moving Averages (ARIMA) forecasting

linear equation based three parameters, (p, d, q)

p auto-regressive (AR) terms (a.k.a. "lags of dependent variable"). For
instance if p is 5, the predictors for x(t) will be x(t-1)….x(t-5).
q moving average terms (MA) (a.k.a. "lagged forecast errors in prediction
equation"). For instance if q is 5, the predictors for x(t) will be e(t-1)….e(t-5)
where e(i) is the difference between the moving average at ith time and
actual value.
d non-seasonal differences

How to determine p and q?

Plot autocorrelation functions and partial autocorrelation functions and
see when they cross an upper confidence interval.
For this data, p=q=2.

technique: Differencing

y(t) = x(t) – x(t-1), Then fit the model on y(t)
Makes the process more stationary

@04/16/2018 - TensorFlow

TensorFlow is based on a Computation Graph executed in parallel.

All data are represented as tensors -- analogy to columns.

Two sets of APIs:

one resembles sklearn

to initialize a classifier, you have to specify feature columns -- different from sklearn.

one lower level

TensorFlow column datatypes (tf.contrib.layers.[...])

for real-valued features: real_valued_column

for categorical features:

If you know all possible values: use sparse_column_with_keys .

If you cannot iterate over all categories (or simply want to allocate ordinal values to
categorical values on the fly): use [...]_hash_bucket .

choose bucket amount wisely -- balance between hashing collisions and
memory consumption

use numerical feature as categorical: bucketized_column

For feature combinations: CrossedColumns

Distributed TensorFlow

Master nodes know the whole Computation Graph.

Worker nodes know only the operation it's assigned with.

worker 0 may be the "parameter server" and hold mutable data (weights, biases, etc.)
worker 1 may hold the training data and compute some operations.

Data can be stored on a Spark cluster (i.e. in HDFS) and streamed to the TensorFlow cluster.
Yahoo did this: TensorFlowOnSpark .

Recurrent Neural Networks (RNN) - Handles Time
Series

two approaches to time series

use a standard neural net or CNN

such as a nonlinear AR(k) model

use a RNN

generalize HMMs or Linear Dynamical Systems
only choice if inputs are of varying lengths

See standard hidden markov model: each "stage" takes the previous result as part of input.

variations

Long Short Term Memory (LSTM)
gated RNNs
stacked RNNs

can be used...

... to predict the next observation given past observations (like an ARIMA model)

... to map one sequence to another sequence ("encoder-decoder" structure)

translates sentences from one language to another
chatbot
auto-caption image

@04/18/2018 - Online Learning
Online learning methods

Least mean squares (LMS)

Online regression -- L2 error

Perceptron

Idea

if we get it right: no change;

if we got it wrong: .

This makes look more like , thus the hyperplane defined by is more
orthogonal to this example of .

In practice, we use averaged perceptrons -- a cheap approximation to voted
perceptons.

Return as its final model the average of all intermediate models

sounds like a ensemble learning, but actually it just keeps one single,
averaged model at any time.

Better than voted perceptons: run-time nearly as fast as single percepton.

can use kernels.

variation: Online SVM -- Hinge loss

Online K-means

different from Neural nets: we look at each example and throw it away.

Analyzing Real-Time Data Streams

Data Streams

may not be peroidic

update most often have a delay from actual event

timestamp reported may...

not be precise (time sync server problem, etc.)
has timezone problem (sometimes needed, sometimes to remove)

consider operations on data streams to be "continuous queries".

outputs can also be considered data streams

types

cumulative operations -- performed on all data streamed

Rolling or windowed operations (e.g. a "last-two-minute window".)

tumbling windows: no overlap
sliding windows: move a fixed length every step (like a queue)
sliding + partitions windows: shards data according to key to two sliding
windows

architechture

lambda architechture
Apache Spark Streaming
...

@04/23/2018 - Stream Processing Systems
(a wrap-up of streaming processing)

Apache Spark

component:

data streams exposed as ever-changing dataframes

We define windows over streams

"joins/merges" make sense on windows, not much on streams themselves.

Based on “micro batching” – periodic invocations of Spark Engine on batches of tuples

To process:

StreamingContext gets started
awaitTermination() is run

Can process whatever is in the DataStream as a DataFrame

Can run countByWindow() etc. to get time-based or tuple-based windows

Apache Storm (and Heron): distributed streams among distributed modules

components

spout: interfaces with the world, produce streams

emits lists of tuples

bolt: receive streams, optionally producing streams + read/update states.

structure: spouts and bolts are usually pipelined. They can also be stacked (for
distributed computing).

promises robust execution (even when compared to Spark)

can be used to mimic MapReduce structure,

To Storm, streamparse is what pyspark is to Spark.

Visualization
Get a holistic sense of data as we load + analyze it

histograms, scatter plots, correlations, time series

Understand our algorithms’ performance

learning curve, validation curve, ROC graph

Present information as part of a report or “dashboard”

figures illustrating performance (in the economic sense, etc.)

Potential Kinds of Plots

Exploratory graphics – for the data scientist. Want to create rapidly, iterate,
Communication graphics – for you to communicate your findings, Again, iteration is
important

“Grammar of Graphics”

Basis of R’s ggplot2

Python port: ggplot

Divides plots into:

layers
data
aesthetic mappings
geometric objects
statistical transformations
position adjustments

scales

coordinate system

facets (groups)

more advanced visualization in python

seaborn : Builds upon matplotlib with a focus on statistical plots

lightning + d3.js : “Dashboards”

requires server -- Jupyter is also a web server

@04/25/2018 - Data Science Ethnics
Why do people do the right thing?

Morality (Ethnics)

Enthical principles

Autonomy: The right to control your data, possibly via surrogates

Informed Consent: You should explicitly approve use of your data based on
understanding

required in human-subjects research

must understand what is being done
must voluntarily consent to the experiment
must have the right to withdraw consent at any time

but no one requires them in “ordinary conduct of business”

consequently we are constantly subject to tests such as A/B tests.

Beneficence: People using your data should do it for your benefit

or at least Non-maleficence: Do no harm

Differential privacy aims to maximize the accuracy of queries from statistical databases
while minimizing the chances of identifying its records.

we want results that are ...

reproducible
fair

	8 - Algos.pptx @ 2/28: Three Common “Design Patterns” in Big Data Analysis
	Caching / memo(r)ization: process a lot of data that repeats/‘partly overlaps’
	process many different tasks in ‘parallel’ (3/12/2018)
	Search and constraint solvers: find an item, a parameter, etc. that maximizes an objective”

	@3/14/2018 - Unsupervised data analysis
	Principal Component Analysis (PCA) -- Group similar features together (roughly)
	Clustering -- Group similar items together
	How to they compare - time complexity:
	Other Techniques

	Supervised Learning
	@03/26/2018 - decision trees
	@03/28/2018 - regression, boosting and SVMs
	Regression
	The Linear Regresion Family
	Principal Component Regression
	Logistic Regression := linear regression + filtering using logistic function + binarizing results to 0&1

	Boosting
	SVM

	@04/02/2018: Tuning and evaluating classifiers
	@4/4/2018 - Artificial Neural Networks
	@4/9/2018 - Convolutional Neural Networks

	@04/11/2018 - Time Series
	@04/16/2018 - TensorFlow
	Distributed TensorFlow
	Recurrent Neural Networks (RNN) - Handles Time Series

	@04/18/2018 - Online Learning
	Analyzing Real-Time Data Streams

	@04/23/2018 - Stream Processing Systems
	Visualization
	@04/25/2018 - Data Science Ethnics

