SQL Queries Update, Insert, Delete Comma

nds and Useful Func.s [What is the result of the following query?

WITH tablel AS (...), INSERT INTO table name(Columnl, Column2, ...) select 2+2 as Num from Person; ANSWER:
2 o G 0 The schema of the result relation is (Num). The result is a
table2 AS (... VALUE valuel', 'Value2', ...); h :
ane (o) S awne J table of n tuples of value 4. Note that if Person is empty then
SELECT DISTINCT coll, col2 alter name [DELETE FROM table name WHERE some_col=some_value;||go is the result table (n=0). Behavior of NULL
WHERE col3="A" AND (col4 IS NOT NULL)|UPDATE movies SET invoice='paid' WHERE paid > 0; ||« An arithmetic operation involving a NULL returns NULL.
FROM table 1 tl JOIN (...) t2 " "y . For example, NULL - NULL = NULL, not zero.
oN t1.id - t2.id COALESCE(coll, col2, "default value”): | ahoolean comparison between two values involving a
: . DDL! Return the first non-NULL argument. NULL returns neither true nor false, Six basic operations
GROUP BY col5 CREATE TABLE People (but unknown in SQL's three-valued [~ .

HAVING col6 > 1 VARCHAR(9) mot mull logic. E.g., neither NULL = NULL nor | ° Projection i, (R)
T M (0) e Mk, NULL != NULL is true. To see if a ® Selection o, (R)
—— Aggregation Functions: ssn INTEGER primary key, -- implies UNIQUE value is NULL, use IS NULL. * Usiich RUR

coll LONG references foreign_ table(key), ||* An SQL query selects iny values * Diff Rl R2
—- COUNT, SUM, AVG, MIN, MAX N whose WHERE expression evaluates itterence K, - K,
!) to true, and groups whose HAVING | ® Product R, xR,
UNION --/EXCEPT/INTERSECT role VARCHAR(9) check (role in ('user','admin' clause evaluates to true. * (Rename) p (R)
))); —-- or: - The aggregate COUNT(*) counts all q }Tﬁ
) NULL and non-NULL tuples; And some other usg
SELECT col FROM tablel WHERE id IN ([-- FOREIGN KEY (cl, c2) REFERENCES table2(kl, k2) COUNT(attribute) counts all tuples * Join g
SELECT tl1_id FROM table2 WHERE A>1); -- PRIMARY KEY (ssn, name, id) —-VIEWS: whose attribute value is not NULL. s Rl ﬁRz
- . i emijoin sj
CHECK works on single columns: CREATE OR REPLACE VIEW viewl AS Otlher S'Qil:-ha'gg- funC-t|9t{10re NULL J 5 Jo R,
) values in their computation. ® Intersection R NR,
CREATE TABLE Album ... SELECT patient_id, patient_name from patients; . MAX() of NULLs only: returns NULL. 1 2
CHECK (NumSongs = (SELECT COUNT(*) FROM Songs s DDL for Weak Entity + ® Division
WHERE s.SingerID=Album.SingerID AND Heap File |Sorted File Hashed
s.AlbumName=Album.AlbumName)) |[Create table Book(Scan all recs p(T) D p(T) D 1.25 p(T) D
Keys: A set of =1 columns. ISBN varchar(30), Title varchar(40), Primary key (ISBN)); " —
Superkey: A key that is a e e BRI Equality Search |p(T)D/2 |D log,p(T) D
superset to a candidate key. ISBN varchar(30), copy# varchar(20), Range Search p(T) D D log, p(T) 1.25 p(T) D
(Therefore, a superkey must Primary key(copy#, ISBN), + (# pages
contain >1 columns.) Foreign key ISBN refers Book(ISBN) ON DELETE CASCADE)); with matches)
Minimal Super key = Candidate Key: A key that can uniquely identify each row in a table. et 2D Search + p(T) D 2D
Primary Key: The chosen Candidate Key for doing that.
Secondary key / Alternate key: A Candidate Key not chosen for doing that. Delete Search+ D [Search +p(T) D |2D

Search Key: A key used for locating records. Sort or control key: A key used to physically sort the stored data. |- Armstrong's Axioms Properties of FD

Composite key or concatenate key: A key with >1 columns. (Usually imp|

Foreign Key: A key in one table (“the dependent table”) that matches the PK of another table (“the parent table”). * Augmentation: XAY=>XZ2YZ

lies "composite primary key".) - Beflexivity: YcX=>X=Y
. Transitivity: X > Y+Y—>Z=>X—Z

Types of Dependencies First Normal Form (1NF):

From the full key: full PK — outside of the PK | Second Normal Form (2NF): 1NF and no partial dependencies « Decomposition: X 2 YZ=>X—=2>Y+X > Z
Partial dependency: part of the PK — outside| Third Normal Form (3NF): 2NF and no transitive dependencies. |- Pseudotrans.: X = Y + WY = Z => WX = Z
Transitive dependency: outside — outside | Boyce-Codd Normal Form
Into-key dependency: outside — into the PK | (BCNF): 1NF + all dep. from full| a1y F<to>—{one]| [shop thing] [moster] One-to-many + lock of Primary Key in

there are a fixed number of columns. « Union: X=2Y+X—2Z=>X->YZ

{Ri,R.3 15 a loslees decomposil o REG R NR2# Ri7Rao0r R.-R

15 fails: Create a new sub-relotion of R.NR, +(R=R.)or (Ry-R,).

{Ri,..,Rn} is dependency preserving if Ft=(Fg,U...UFg,)t
Quick Vplida® : For ¥ A-=>B ip Ffeé R, 3R that contains A,B.
No Redundancy / BCNF def decomp(R):)
- not always compatible w/ FD preservation: f°irfA;>§ il 0?“ ét&ﬁ:ﬁﬂés) of
Validation: Every FD in F+ should come from a new R1 = A+B

superkey (including PK) of some sub-relation. new R2 = A+(R-B)

Algorithm: (right). If assertion fails, try 3NF: e S it
1. Given F, calc its min cover Fm. decomp (RO)

2. For every X->Y in Fm, create a relation Ri=XY. assert this is FD-Preserving

s

: <&> @ I{@“’ tot. particpa =Weak Entity

3-way SINGLE LINE: partia| gortis:

n, A master can exist wW/O a slawve.
el hp < DOUBLE LINE: tot. participation:

¢ 1o
weter Zlaue| (\077 4\ key acirib. -
sersor NoCFedla |2 R

R2)+-Decompose Isolation Levels! ER Diagrams T |Deadlocks
mp Seriolizabl. Repeatabl RR . Commited R. Uncomm.|If mu!tiple transactions
Rel. X-locks|Mt the end. Mt the end At the end Not obiained|acquire locks on data

Rel. S-lockd At the end| At the end| ASA P Not obiined|items in a specific order
(a transaction doesn't

15 o slave exicts, he [she must nas master]

R:

Closure of a FD set F, denoted by F+, is the set of all FDs logically implied by F.

Algorithm: Repeat these properties in any order on all FDs in F+, till no change:

»/F‘e\. Rongel| At the end Not obtained Not obtained Not obtained

Phartom Rend| Preverted Mow be | Maube | May be have to acquire locks on

How to find Minimal Cover of a FD set F: Repeat these operations in any order

possibly can be determined by a through FDs in F. Algorithm: result = set(a);

while result.updated: for A->B in F: if A in result: result+=B

each data item involved),

onrepent Rd.| Prevented| Prevented| May be | May be
then no cycle can happen

Dirty Reods| Prevented Prevented | Prevented May be

L

Conflict Serializable: Ways to see whether a schedule is conflict serializable:

- iff its precedence graph contains no cycles.) o
- iff it can be transformed into a serial schedule by swapping non-conflicting
operations. Two operations are said to be conflicting if all conditions satisfy:

1 They belong to different transaction @ They operation on same data item

@Patomicity: either all operations in a transaction are executed, or none is.

P consistency: each transaction is executed in isolation keeps the database in a
consistent state (this is the responsibility of the user and constraints on the DB)

Qisolation: transactions won't affect each other. Pdurability: updates preserves!

@ At Least one of them is a WRITE operation

- Transactions that are all well-formed and 2PL are serializable.
- Well-formed: Acquires locks as it should. (i.e., not READ UNCOMM.)
- 2PL: Don’t acquire any lock after one lock has been released.

WR Conflict (dirty read): A transaction T2 could read a database object A that has
been modified by another transaction T1, which has not yet committed. Conflicts
RW Conflict (unrepeatable read): T1 reads row A, A is 1. T2 then updates A to 2.
Now if T1 reads row A again, A is now different. (Phantom Read): T1 queries X, {A,
B} is returned. T2 adds row C that satisfies X. T1 query X later, {A, B, C} returned.
WW Conflict (lost update): A transaction T2 could overwrite the value of an object
A, which has already been modified by a transaction T1, while T1 is still in progress.

Types of File Organization
- Heap files: cheap for full-file scans & frequent updates.
o data unordered o writes new data to the end
- Sorted files: cheap for sorted data retrieval & range searches.
o need external sort or an index to keep sorted
- Hashed files: cheap for equality searches. o Collection of buckets with
primary & overflow pages o hashing function over search key attributes

JOIN COSTS

1. Store actual rows with key values
Oggn_s__ijj,t_u__tg_s as a file organization. It's a clustering and sparse index. Iﬂdex
@ For each dataset, at most one index can be in Alternative 1.
@ Cheap for lookups; costly for insertions and deletions. Sto rage
2. (key, record id of matching data record) .
3. (key, list of record ids of matching data records) A] +emat| ves
For the last two: For each dataset, multiple indices can be in Alternative 2/3.

.AS is more compact than A2, but leads to variable sized data entries even if

Locks 2PL S2PL SS2PL
[Merge Sort Join]
To sort each relation: X-locks = Released ASAP = Released atthe end = Released at the end
Number of Passes =
1 +logB-1TN/B1 where S-locks | Released ASAP Released ASAP Released at the end

B = # buffers, N = # pages.

SortCost: 2N * (# Passes).
[Hash Join] = 3(b(R) + b(S)) [Merge Join] MergeCost: b(R) + b(S) + SortCost
[Block Nested Loop Join] b(R) + (b(R)/(B-2)) * b(S) [Nested Loop Join] b(R) + t(R)-b(S)

search keys are of fixed length. @ Easier to maintain, but more costly to look up.

[Index Nested Loop Join] b(R) + t(R) * cost of matching in S (1.2 for hash index, 2-4 for B+

tree) and: - Clustered index: 1 I/O on avg. - Unclustered index: Up to 1 I/O per S tuple.
b(R): Number of blocks (pages of relation R) r(R): Number of tuples of R (rows)

Key Constraint: e.g. Any [Department] can only <be managed> by 0 or 1 [employee]:
Total/Partial Participation: e.g. o Not all employees get to manage — [Employees] partially part. in <manage>: thin/single line.
o Each department must be managed — [Departments] totally participates in <manage>: thick/double line.

ER Features

Weak Entities: One-to-many relationship + Total Participation.
o One-to-many relationship — "the identifying relationship of the weak entity":

Each Weak Entlty can only have one Owner Entity!
[The Owner] +—o< [The Weak]
o Total Participation: The weak entities must all ("totally") participate in the identifying relationship.
Class Hierarchies: Represented by a triangle with text “ISA”. e.g.: There are 2 types of [Users]: [Free Users] and [Premium Users].
Aggregation: Represented by a dashed box surrounding a collection of entities + relationships. E.g.:
= A process contains these info:

O [Employees]—<monitors>—{ [Projects]—<sponsored by>—[Departments]}

= Zero, 1 or more employees can monitor the process.
= An employee can monitor 0, 1 or more processes.

[Dep.]»<manage>—[Emp.ee]

- All projects must be sponsored by 1 or more departments.
- A department does not necessarily have to sponsor any project.

Classes of Indices
Primary / Secondary:
Primary has the Primary Key
Clustered / Unclustered:
Orderings of records and
index are nearly the same.
Can cluster to only 1 index.
Dense / Sparse:
Dense has index entry per
data item; Sparse may skip.
Alt.1 always gives Sparse.

Model for Analyzing Access Costs and I/O Costs

p(T): # of data pages in table T r(7): # of records in table T D: average time to read/write a page

Seek Time: Cost switching tracks. Rotational Delay: Cost to go to a sector when head is on
right track. Page Transfer: Cost reading a page

db.orders.mapReduce (
emit(item.name,
> {

(key, objs)
count:
th

{out:

{count: 1,

1}, query:

{

qty:

key:

item.qty})}},

=> sum + ob
flnallze

'val'},

() => { for (var item of this.items) { // map

// reduce

objs.reduce((sum, obj) => sum + obj. count , 0),
objs.reduce((sum, obj)
{inline:

0)
// finalize

(key, res) => {res.avg = res.qty/res.count; return res} });

! Print drinkers who like all of the beers that John likes.
WITH jb AS(SELECT DISTINCT beer -- beers John likes_|
FROM likes WHERE drinker-'John')
SELECT DISTINCT 1ll.drinker -- select all people who
-- do not have a beer they don't like but John likes
FROM likes 11 WHERE NOT exist (
SELECT beer -- any beer John likes
FROM jb -- but not liked by this guy
WHERE beer NOT IN (SELECT beer
FROM likes 12 -- all beers this guy likes
WHERE 12.drinker 11.drinker))

SELECT 1l.drinker

Use Agg. Func.s in HAVING: For each drinker for whom
there are >2 bars serving some beer they like, print the
tot. # of beers thev like that are served by some bar
Count (DISTINCT 1.beer) AS total
FROM likes 1 inner join serves s ON l.beer=s.beer
GROUP BY 1.drinker HAVING Count (DISTINCT s.bar)

SELECT DISTINCT depart FROM flightR Print All Cities That Have No Direct Flight to PHL

F1 WHERE NOT EXISTS (SELECT

2

Print all airports that have direct flights to all destinations that PHL does.
Lv. 3: Flights departing from a F1 city and arriving in a F2 city.
Lv. 2: Destinations of PHL flights, where no flight from a F1 city will arrive.
Lv. 1: Cities that does not arrive in a city described in Query Lv. 2.

WHERE NOT EXISTS (

FROM flight F2 WHERE F1.depart (SELECT depart FROM flight) MINUS (SELECT
F2.depart AND F2.arrive 'PHL') depart FROM flight WHERE arrive='PHL')
SELECT depart FROM flight f1 -- this is where we select cities from

—-- these cities should not have:

SELECT arrive FROM flight f2 -- a destin. city departed from PHL
WHERE depart='PHL' AND NOT EXISTS (-- that doesn't have
SELECT FROM flight £3 -- going from

WHERE fl.depart
AND f2.arrive

"these cities” mentioned above
—-- having same destination as

f3.depart
f3.arrive))

db.

results =

people.insert ({name:

{score: 1

(doc)
{$group: { _id:
total:
{$sort : { dec:
{$match: { sum:
{$unwind :
{Sproject: {tosSho
{ gllmlt 2 5 B

, age:
).limit(3).skip(1l).count();
db.people.find(). toArray(),
db.people.find().forEach(

=> printjson(doc));
db.demonstrate.aggregate([

-1, asc:

"Ske OfSomeArra

'Li'}

db.people.deleteMany ({major: DATS 1)
db.people.deleteOne ({name : 'Mary'});
db.old Collection Named People.drop();
db.people. updateOne({ id: 1},
{$set: {role: 'admin'}});
db.people.updateMany ({_. 1d {Sne: 1} },
{$set: {role: 'user'}});
db.people.findOne().pretty();
db.people. flnd({
"name.last" "Li",
salary {$ex15ts true},
tookCourses CIS550', //Array
age . {$gt: 20),
gender: {$in : ['M' , 'F']}
skills: {$all : ["ML", "DB"]},
Sor : [{majorIn: 'DATS'}
{worksAt: 'DATS'}],
}, {name:true, _id:false}).sort(

-1

'$userID o
{$sum: $pr;ce 3}

1
}

{ $gte: 20,
slte: 45}} }
}
}
)

i, toHlde 0}
{ $sk1p 8 5]

db.business.mapReduce(

() => emit(this.city, this.stars),
(state, 1) => {
mean: 1.reduce((p,c)=>p+c,0)/1.length,

+<MongoDB
MATCH (m)<-[*1..5]-(n:Person {name:

HERE n.name =

[rel:LOVES {since:
OPTIONAL MATCH p: (n)-->(m)
Optional pattern: nulls will be used for missing parts.
AND n.age > 10
ITH user, count(friend) AS numFriends
ORDER BY n.property DESC
RETURN DISTINCT n AS columnName, type(m),
collect(n.property) AS list_of_prop_vals;

'Alice’

SKIP 20 LIMIT 10

Neo4J! - size(...) /I Countthe paths matching the pattern
"Alice’})- CREATE (n:Person {name: $value})
2010} | HATES]->(m:Person) SET n:Spouse:Parent:Employee
-- Assign a path to p. REMOVE n:label // Removes just the label, not the node!

FOREACH (r IN relationships(path) |
SET r.marked = true) // Try: MATCH SET RETURN
FOREACH (name IN ["Alice", "Bob"] |
CREATE (:Person {name: name}))
MERGE (n:Person {name: 'Alice'})
ON CREATE SET n.created = timestamp()

min : Math.min(C ...arr),
max : Math.max(C ...arr) 1});
(1)in SQL:

GRANT OPTION;
ALTER and DROP. Also:
GRANT role_name TO user_name; -
REVOKE privilege ON table FROM role
-- if REVOKing select ON a view- Non-clusteredii

role_name;

CASCADE;
FROM its owner,

Change own password

Read data

Terminate own query

Write/update/delete data

Manage index/constraints

Terminate others’ queries

GRANT select, insert(col), delete,
references (frnKey) ON table TO role WITH
-- Only Owner can CREATE,

CREATE ROLE

the view gets dropped.

Neo4J Built-In Roles

SNIOM¥31N0 14310ML

pproaches to

- Subject S can READ object O iff class(S)=class(O)

Eell—LaPadula Model: Top Secret(TS)> Secret (S) > Confidential (C) > Unclassified (U)
DBMS Security:

(1) discretionary

- [*1..5]: any relation chain of 1~5 long. ON MATCH SET n.accessTime = tlmestamp(),

- [*]: any relation chain of any length. n.counter = coalesce(n.counter, @) + 1;

- shortestPath C (n:Person)-[*..6]-(m)) CREATE / DROP INDEX ON :Actor(name);

- allShortestPaths((n:Person)-[*..6]-(m)) CREATE / DROP CONSTRAINT ON (p:Person)
Objectives of DBMS Security: ASSERT p.name IS UNIQUE

secrecy, integrity, availability. DBMS Security

- Subject S can WRTIE object O iff class(S)<class(O)
and (2) mandatory access control.

SNIOf ¥31N0 11Nd oML

¥ 1OITAS

13 T oTdel WOud

€3 € oTqel NIOL IIFT

£43°€3 = PT'I3 NO
A3°Z3 = PT'I3 NO
z3 7 °TdeL NIOL IJFT

Sequential scan of file: NPa

lndex I on Erl&
ustere

NI LON 3[GNop e 10} juswiaoe|da: — UoISN|aXa Yim NIOF ¥3LNO TIN4|

(Pllllx

NIOr ¥31N0 1IN4
NIOr¥31no 1431

$9|qe} oM} wouy 153135

NI LON © 10} uswiaoedas —
UOISNOX? UM NIOT ¥3LNO 1431

*Z 3|qeL wouj uonedl|dnp ss3| YIMm ‘NIOT ¥INNI 03 Jejiwis — NIOF IIN3S

A
]
a3b T # TL Egg E Bl E
efeflh sfefil oF Y Bgdgd TR ghiE gr gs
Ot QH * ot OH * oot g 0=
"5PSE 19 SIS e 8 * NEoR e ayE B o
e e | s BEEE Lo 9E e
vy SI"‘ P BI"' " Bl"‘ o E-I"‘ “E ae n EI"' <
cEgdsn 7 RHE ol AGiElr gis el ¥
W Elwa h N - bl
TERE ERRE 28 L e B
55 5 ¥l 3 Rl TR
[N o " e
o8 g o T
es(®) i B .
ary key matches selection:|Cost is Height(l)+1 for a B+ jtree, about 1|2 for hash index.
in exlma;cnmg one or more se es(h+NPages(F)) prod. of HI-SOT matching sefects.

Factors of matching

Cost Estimates
For Single-
Relation Plans

Privileges Reader Publisher Architect Admin

NIOr ¥31N0 1437 € pue NIOf ¥3NNI

= PT'T3 NO
23 7 STAeL NIOL WANNI

{43°€3 = PT T3 NO
€3 € °Tqel NIOL ¥EINO IJAT
T3 T °Tqel WOud

FER Y

* LOTTAS

= PT'T3 NO

°Tqel NIOL WANNI
%3°Z3 = PT I3 NO

23 7 °Tqel NIOL WANNI

193 €3

€3 €

T3 T oTdel WOMd

* IOTTES

fects: (NPag

NIOF IN3S ILNY
NIOM 43NNI

NIOr ¥31N0 LHOY

NI LON € 10} juawade|das
~ UOISNIIX YIM NIOF ¥3LNO LHOLY

[}

3

]

a

<]

z

=

5

o

£

c

=

o 8

S EEY

S

B a

=) a E %, 8 azd » B o B
s gt RH K BT 1]
z 2g4g 525813 :5- 25243 25243
ES o BEgE e tgE X
° g8 winBE @] LaE
a EB &8, T &g)® e
H e A Tz @ g g
- 3 gha S @ aE ghe
=3 o PR [b0
= BB] Eg X &

N h Ll R o Al

@ | ER g3 jud o

d o e " Te Tg
o o« NI

H [&

& 5 bE

] o s

E SQLJoins -

S 8

EER <

