
SQL Queries                                             Update, Insert, Delete Commands and Useful Func.s


   COALESCE(col1, col2, “default value”): 
   DDL↓    Return the first non-NULL argument.


CHECK works on single columns:


    DDL for Weak Entity ↓


Keys: A set of ≥1 columns. 
Superkey: A key that is a 

superset to a candidate key.

(Therefore, a superkey must 

contain >1 columns.)

Minimal Super key ≡ Candidate Key: A key that can uniquely identify each row in a table.


Primary Key: 	 	            The chosen Candidate Key for doing that.

Secondary key / Alternate key: A Candidate Key not chosen for doing that.


Search Key: A key used for locating records.  Sort or control key: A key used to physically sort the stored data.

Composite key or concatenate key: A key with >1 columns. (Usually implies "composite primary key".)

Foreign Key: A key in one table (“the dependent table”) that matches the PK of another table (“the parent table”). 

Types of Dependencies  
From the full key: full PK → outside of the PK

Partial dependency: part of the PK → outside

Transitive dependency: outside → outside

Into-key dependency: outside → into the PK


R2)←Decompose    Isolation Levels↓    ER Diagrams ↑ 

Conflict Serializable: Ways to see whether a schedule is conflict serializable: 
-  iff its precedence graph contains no cycles.

-  iff it can be transformed into a serial schedule by swapping non-conflicting 
operations. Two operations are said to be conflicting if all conditions satisfy:

   ①  They belong to different transaction  ②  They operation on same data item

   ③ At Least one of them is a WRITE operation

-  Transactions that are all well-formed and 2PL are serializable.

   - Well-formed: Acquires locks as it should. (i.e., not READ UNCOMM.)

   - 2PL: Don’t acquire any lock after one lock has been released.


JOIN COSTS  
[Merge Sort Join] 
To sort each relation: 
Number of Passes = 
1 + logB-1⌈N/B⌉ where 
B = # buffers, N = # pages.
    SortCost: 2N * (# Passes). 
[Hash Join]  ≈ 3(b(R) + b(S))                          [Merge Join] MergeCost: b(R) + b(S) + SortCost 
[Block Nested Loop Join] b(R) + (b(R)/(B-2)) * b(S) [Nested Loop Join] b(R) + t(R)⋅b(S) 
[Index Nested Loop Join] b(R) + t(R) * cost of matching in S (1.2 for hash index, 2-4 for B+ 
tree) and: - Clustered index: 1 I/O on avg. - Unclustered index: Up to 1 I/O per S tuple.  

b(R): Number of blocks (pages of relation R) r(R): Number of tuples of R (rows)  

What is the result of the following query? 
select 2+2 as Num from Person;   ANSWER:
The schema of the result relation is (Num). The result is a 
table of n tuples of value 4. Note that if Person is empty then 
so is the result table (n=0).

• An arithmetic operation involving a NULL returns NULL. 

For example, NULL - NULL = NULL, not zero.

• A boolean comparison between two values involving a 

NULL returns neither true nor false, 
but unknown in SQL's three-valued 
logic. E.g., neither NULL = NULL nor 
NULL != NULL is true. To see if a 
value is NULL, use IS NULL.


• An SQL query selects only values 
whose WHERE expression evaluates 
to true, and groups whose HAVING 
clause evaluates to true.


• The aggregate COUNT(*) counts all 
NULL and non-NULL tuples; 
COUNT(attribute) counts all tuples 
whose attribute value is not NULL. 
Other SQL agg. func. ignore NULL 
values in their computation.


• MAX() of NULLs only: returns NULL.


First Normal Form (1NF): there are a fixed number of columns.

Second Normal Form (2NF): 1NF and no partial dependencies

Third Normal Form (3NF): 2NF and no transitive dependencies.

Boyce-Codd Normal Form 
(BCNF): 1NF + all dep. from full 

                 
• Armstrong's Axioms


• Reflexivity:                 Y ⊆ X => X → Y

• Augmentation:          X → Y => XZ → Y Z

• Transitivity:    X → Y + Y → Z => X → Z


• Union:                 X → Y + X → Z => X → Y Z

• Decomposition: X → Y Z => X → Y + X → Z

• Pseudotrans.:  X → Y + WY → Z => WX → Z


Deadlocks 
If multiple transactions 
acquire locks on data 
items in a specific order 
(a transaction doesn't 
have to acquire locks on 
each data item involved), 
then no cycle can happen

Types of File Organization 
- Heap files: cheap for full-file scans & frequent updates.


   ◦ data unordered ◦ writes new data to the end 

- Sorted files: cheap for sorted data retrieval & range searches.


   ◦ need external sort or an index to keep sorted 

- Hashed files: cheap for equality searches.           ◦ Collection of buckets with 

primary & overflow pages      ◦ hashing function over search key attributes

Properties of FD

Behavior of NULL



Key Constraint: e.g. Any [Department] can only <be managed> by 0 or 1 [employee]: [Dep.]!<manage>—[Emp.ee]

Total/Partial Participation: e.g. ◦ Not all employees get to manage — [Employees] partially part. in <manage>: thin/single line.

        ER Features    ◦ Each department must be managed — [Departments] totally participates in <manage>: thick/double line.

Weak Entities: One-to-many relationship + Total Participation.    Each Weak Entity can only have one Owner Entity!

   ◦ One-to-many relationship — "the identifying relationship of the weak entity":  [The Owner] +——o< [The Weak]
   ◦ Total Participation: The weak entities must all ("totally") participate in the identifying relationship.

Class Hierarchies: Represented by a triangle with text “ISA”. e.g.: There are 2 types of [Users]: [Free Users] and [Premium Users].

Aggregation: Represented by a dashed box surrounding a collection of entities + relationships. E.g.:

   ◦ [Employees]—<monitors>—{ [Projects]—<sponsored by>—[Departments]}  |   ▪ A process contains these info:

      ▪ Zero, 1 or more employees can monitor the process.     |      - All projects must be sponsored by 1 or more departments.

      ▪ An employee can monitor 0, 1 or more processes.         |      - A department does not necessarily have to sponsor any project.

  Model for Analyzing Access Costs and I/O Costs 
p(T): # of data pages in table T  r(T): # of records in table T  D: average time to read/write a page

  Seek Time: Cost switching tracks. Rotational Delay: Cost to go to a sector when head is on 
right track. Page Transfer: Cost reading a page







Print All Cities That Have No Direct Flight to PHL 

Print all airports that have direct flights to all destinations that PHL does. 
Lv. 3: Flights departing from a F1 city and arriving in a F2 city. 

Lv. 2: Destinations of PHL flights, where no flight from a F1 city will arrive. 

Lv. 1: Cities that does not arrive in a city described in Query Lv. 2.


←MongoDB            Neo4J↓ 
MATCH (m)<-[*1..5]-(n:Person {name: 'Alice′})-
 [rel:LOVES {since: 2010} | HATES]->(m:Person)
OPTIONAL MATCH p: (n)-->(m)  -- Assign a path to p.
          Optional pattern: nulls will be used for missing parts. 
WHERE n.name = 'Alice' AND n.age > 10
WITH user, count(friend) AS numFriends
ORDER BY n.property DESC    SKIP 20 LIMIT 10
RETURN DISTINCT n AS columnName, type(m),
  collect(n.property) AS list_of_prop_vals;
- [*1..5]: any relation chain of 1~5 long.
- [*]:     any relation chain of any length.
- shortestPath    ( (n:Person)-[*..6]-(m) )
- allShortestPaths( (n:Person)-[*..6]-(m) )
Objectives of DBMS Security: 
secrecy, integrity, availability.
Bell-LaPadula Model: Top Secret (TS) > Secret (S) > Confidential (C) > Unclassified (U)
    - Subject S can READ  object O iff class(S)≥class(O)  - Subject S can WRTIE object O iff class(S)≤class(O)

Approaches to DBMS Security: (1) discretionary and (2) mandatory access control.

(1)in SQL:  
GRANT select, insert(col), delete, 
references(frnKey) ON table TO role WITH 
GRANT OPTION; -- Only Owner can CREATE, 
ALTER and DROP. Also: CREATE ROLE 
role_name; GRANT role_name TO user_name;  
REVOKE privilege ON table FROM role 
CASCADE; -- if REVOKing select ON a view 
FROM its owner, the view gets dropped.

Use Agg. Func.s in HAVING: For each drinker for whom 
there are >2 bars serving some beer they like, print the 

tot. # of beers they like that are served by some bar 

Classes of Indices 
Primary / Secondary:  

Primary has the Primary Key

Clustered / Unclustered:  

Orderings of records and 
index are nearly the same.


	 Can cluster to only 1 index.

Dense / Sparse:  
	 Dense has index entry per 

data item; Sparse may skip.

	 Alt.1 always gives Sparse.

! Print drinkers who like all of the beers that John likes. 
WITH jb AS -- beers that John like
 (SELECT DISTINCT beer FROM likes WHERE drinker='John')
SELECT DISTINCT l1.drinker -- select all people who do
-- not have a beer they don't like but John likes
FROM likes l1 WHERE NOT exist
  (SELECT beer      -- any beer John likes
   FROM jb          -- but not liked by this guy
   WHERE beer NOT IN (SELECT beer   -- all beers this
         FROM likes l2 -- guy likes
        WHERE l2.drinker = l1.drinker ) )

OR

db.people.insert({name: 'Li'});
db.people.deleteMany({major: 'DATS'});
db.people.deleteOne ({name : 'Mary'});
db.old_Collection_Named_People.drop();
db.people.updateOne({_id: 1}, 
    {$set: {role: 'admin'}});
db.people.updateMany({_id: {$ne: 1} },
    {$set: {role: 'user'}} );
db.people.findOne().pretty();
db.people.find({
  "name.last"   : "Li",
  salary        : {$exists: true},
  tookCourses   : 'CIS550',//Array
  age           : {$gt: 20},
  gender: {$in  : ['M' , 'F' ]},
  skills: {$all : ["ML", "DB"]},
  $or           : [{majorIn: 'DATS'}
                   {worksAt: 'DATS'}],
 }, {name:true, _id:false}).sort(
    {score: 1 , age: -1  }
 ).limit(3).skip(1).count();
results = db.people.find().toArray();
db.people.find().forEach(
  (doc) => printjson(doc) );
db.demonstrate.aggregate([
  {$group: { _id: '$userID', 
           total: {$sum: "$price"}} },
  {$sort : { dec: -1, asc: 1 }      },
  {$match: { sum: { $gte: 20,
                    $lte: 45 } }    },
  {$unwind : "$keyOfSomeArray"      }, 
  {$project: {toShow: 1, toHide:0}  },
  { $limit : 5 }, { $skip : 5 }   ] );
db.business.mapReduce(
 () => emit(this.city, this.stars),
 (state, l) => {
  mean: l.reduce((p,c)=>p+c,0)/l.length,
  min : Math.min( ...arr ),
  max : Math.max( ...arr ) });

db.orders.mapReduce( () => { for (var item of this.items) { // map
     emit(item.name, {count: 1, qty: item.qty})}},
  (key, objs) => {                                       // reduce
    count: objs.reduce( (sum, obj) => sum + obj.count , 0),
    qty  : objs.reduce( (sum, obj) => sum + obj.qty   , 0)
  }, {out: {inline: 1}, query: {key: 'val'}, finalize:  // finalize
       (key, res) => {res.avg = res.qty/res.count; return res} });

- size( ... )  // Count the paths matching the pattern 
CREATE (n:Person {name: $value})
SET n:Spouse:Parent:Employee
REMOVE n:label // Removes just the label, not the node!
FOREACH (r IN relationships(path) |
  SET r.marked = true) // Try: MATCH SET RETURN
FOREACH (name IN ["Alice", "Bob"] |
 CREATE (:Person {name: name}))
MERGE (n:Person {name: 'Alice'})
  ON CREATE SET n.created    = timestamp()
  ON MATCH  SET n.accessTime = timestamp(),
     n.counter = coalesce(n.counter, 0) + 1;
CREATE / DROP INDEX ON :Actor(name);
CREATE / DROP CONSTRAINT ON (p:Person)
  ASSERT p.name IS UNIQUE

DBMS Security

TSQ
L JO

IN
 TYPES

Table 2
Table 1

LEFT O
U

TER JO
IN

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
 
L
E
F
T
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k
;

Table 2
Table 1IN

N
ER JO

IN

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
I
N
N
E
R
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k
;

Table 2
Table 1

FU
LL O

U
TER JO

IN

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
 
F
U
L
L
 
O
U
T
E
R
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k
;

Table 2
Table 1

RIGHT O
U

TER JO
IN

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
R
I
G
H
T
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k
;

Tw
o IN

N
ER JO

IN
s

Table 1

Table 3

Table 2

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
I
N
N
E
R
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k

 
I
N
N
E
R
 
J
O
I
N
 
T
a
b
l
e
_
3
 
t
3

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
3
.
f
k
;

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
R
I
G
H
T
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k

 
W
H
E
R
E
 
t
1
.
i
d
 
i
s
 
n
u
l
l
;

Table 2
Table 1

RIGHT O
U

TER JO
IN

 w
ith exclusion – 

replacem
ent for a N

O
T IN

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
 
L
E
F
T
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k

 
W
H
E
R
E
 
t
2
.
f
k
 
i
s
 
n
u
l
l
;

Table 2
Table 1

LEFT O
U

TER JO
IN

 w
ith exclusion 

– replacem
ent for a N

O
T IN

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
;

S
E
L
E
C
T
 
*
 

 
 
F
R
O
M
 
T
a
b
l
e
_
2
;

Table 1

SELECT from
 tw

o tables

Table 2

Tw
o FU

LL O
U

TER JO
IN

S

Table 1

Table 3

Table 2

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
 
F
U
L
L
 
O
U
T
E
R
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k

 
 
F
U
L
L
 
O
U
T
E
R
 
J
O
I
N
 
T
a
b
l
e
_
3
 
t
3

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
3
.
f
k
;

Tw
o LEFT O

U
TER JO

IN
S

Table 1

Table 3

Table 2

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
 
L
E
F
T
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k

 
 
L
E
F
T
 
J
O
I
N
 
T
a
b
l
e
_
3
 
t
3

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
3
.
f
k
;

Created by Steve Stedm
an

Created By Steve Stedm
an

http://SteveStedm
an.com

Tw
itter  @

SqlEm
t

Table 2
Table 1

SEM
I JO

IN
 – Sim

ilar to IN
N

ER JO
IN

, w
ith less duplication from

 Table 2.

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
W
H
E
R
E
 
E
X
I
S
T
S
 
(
S
E
L
E
C
T
 
1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
R
O
M
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
 
W
H
E
R
E
 
t
2
.
i
d
 
=
 
t
1
.
f
k

 
 
 
)
;
 

IN
N

ER JO
IN

 and a LEFT O
U

TER JO
IN

Table 1

Table 3

Table 2

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
I
N
N
E
R
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k

 
 
L
E
F
T
 
O
U
T
E
R
 
J
O
I
N
 
T
a
b
l
e
_
3
 
t
3

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
3
.
f
k
;
 

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
 
F
U
L
L
 
O
U
T
E
R
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
O
N
 
t
1
.
i
d
 
=
 
t
2
.
f
k

 
W
H
E
R
E
 
t
1
.
i
d
 
i
s
 
n
u
l
l

 
 
 
 
O
R
 
t
2
.
f
k
 
i
s
 
n
u
l
l
;

FU
LL O

U
TER JO

IN
 w

ith exclusion – replacem
ent for a double N

O
T IN

Table 2
Table 1

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
W
H
E
R
E
 
N
O
T
 
E
X
I
S
T
S
 
(
S
E
L
E
C
T
 
1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
R
O
M
 
T
a
b
l
e
_
2
 
t
2

 
 
 
 
 
 
 
 
 
W
H
E
R
E
 
t
2
.
i
d
 
=
 
t
1
.
f
k

 
 
 
 
 
 
 
)
;
 

Table 2
Table 1

AN
TI SEM

I JO
IN

S
E
L
E
C
T
 
*

 
 
F
R
O
M
 
T
a
b
l
e
_
1
 
t
1

 
 
C
R
O
S
S
 
J
O
I
N
 
T
a
b
l
e
_
2
 
t
2
;

Table 2
Table 1

CRO
SS JO

IN
, like a FU

LL O
U

TER JO
IN

 w
ith out specifying JO

IN
 condition.

SQL Joins
Neo4J Built-In Roles

- Sequential scan of file: NPages(R)

- Index I on primary key matches selection: Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.  

- Clustered index I matching one or more selects: (NPages(I)+NPages(R)) * prod. of RF’s of matching selects.

- Non-clustered index I matching one or more selects: (NPages(I)+NTuples(R)) * product of Reduction 
Factors of matching selects. 

Cost Estimates  
For Single- 
Relation Plans


