Know For Midterm 2018

Mingyang Li

April 27, 2018

Abstract
This is meant for STAT512 by Professor Ewens at the University of Pennsylvania.

Part I

Concepts

1 Basic Aims of Statistics

- To estimate the range of a parameter optimally.
- To test hypotheses about the numerical value of the parameter optimally.

2 Statistics

Statistics is an inferential science bansed on observations involving randomness.

3 Quantities

- A "random variable", Y, follows a distribution which depends on some parameter θ.
- We want to estimate the parameter θ, but -- more often -- we estimate an one-to-one function of it, $\tau(\theta)$. Whichever the case, the variable we want to estimate is called the estimand.
- A function involving a R.V. $Y, f(Y, \ldots)$, is also a RV.
- Any function $f(Y)$ of the RV Y alone can be seen as an estimator for the estimand $\tau(\theta)$ associated with its distribution.
- If the mean of this function, $\mathrm{E}[f(Y)]$, happens to be the estimand itself, then this function -- as an estimator -- is unbiased.
* The MVU ("minimal variance unbiased") estimator of $\tau(\theta)$: The unbiased estimator of $\tau(\theta)$ whose variance is \leq any other unbiased estimator of $\tau(\theta)$.
- The value an estimator takes on (or "yields") is called an estimate.
- Sufficient Statistics, $w\left(Y_{1}, \ldots, Y_{n}\right)$, of a parameter, θ, is a function of the n iid RVs whose JDF will become independent of this parameter if w is given.
- The Minimal Non-Trivial Sufficient Statistics (MNTSS) has two constraints over the ordinary definition of SS:
* Minimality: Any other SS can be reduced (read: "transformed via a function") into this SS.
* Non-triviality: The dimension of this SS should be $<n$. i.e, we have actually cut off some data / compressed the data.
- Others
- "Average" is not "mean":
* "Mean" (μ) is a parameter.
* "Average" can be either
- a RV: \bar{Y}, or
- a number: \bar{y}.
- Variance: $\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-\mathrm{E}^{2}(Y)$.

Part II

Formulas

4 Gamma Function

- Definition: $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$.
- Values:
$-\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1$
$-\Gamma(2)=\int_{0}^{\infty} t \cdot e^{-t} d t=1$
$-\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} \frac{1}{\sqrt{t}} e^{-t} d t=\sqrt{\pi}$
- Recurrence Relation: $\Gamma(x)=(x-1) \cdot \Gamma(x-1)$
- If x is integer: $\Gamma(x)=(x-1)$!
- If $x>0$ but is not int: Use the Recurrence Relation to strip the " x " to the lowest number $\in(1,2)$, then plug in the value as given in the table.
- Integrals involving Gamma Function:
$-\int_{0}^{\infty} t^{x-1} e^{-c t} d t=c^{-x} \cdot \Gamma(x)$
$-\int_{0}^{\infty} g(t) \cdot e^{-h(t)} d t$: often helpful to set $h(t)=: t^{\prime}$.

5 The density functions of order statistics (OS) of n iid continuous RVs $Y_{i} \sim f(y)$

- The i-th OS alone: $f_{Y_{(i)}}\left(y_{(i)}\right)=\frac{n!}{(i-1)!(n-i)!}\left[F_{Y}\left(y_{(i)}\right)\right]^{i-1} \cdot f_{Y}\left(y_{(i)}\right) \cdot\left[1-F_{Y}\left(y_{(i)}\right)\right]^{n-i}$
- The JDF of the i-th OS and the j-th OS: $f_{Y_{(i)}, Y_{(j)}}\left(y_{(i)}, y_{(j)}\right)=\frac{n!}{(i-1)!(j-i)!(n-j)!}\left[F_{Y}\left(y_{(i)}\right)\right]^{i-1} \cdot f_{Y}\left(y_{(i)}\right)$. $\left[F_{Y}\left(y_{(j)}\right)-F_{Y}\left(y_{(i)}\right)\right]^{j-i-1} \cdot f_{Y}\left(y_{(j)}\right) \cdot\left[1-F_{Y}\left(y_{(j)}\right)\right]^{n-j}$

6 The Cramer-Rao Lower Bound of the Variance of an Estimator

- This Bound is achievable ${ }^{1}$ iff the $\operatorname{JDF} f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)$ can be written in the "exponential family" form:

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)=h\left(y_{1}, \ldots, y_{n}\right) \cdot e^{C(\theta)+D(\theta) \cdot \hat{\tau}_{\mathrm{MLU}}\left(y_{1}, \ldots, y_{n}\right)}
$$

2

[^0]- The Bound is given by: ${ }^{3} \operatorname{Var}\left[\hat{\tau}\left(y_{1}, \ldots, y_{n}\right)\right] \geq$

$$
\operatorname{Var}\left[\hat{\tau}_{\mathrm{MLE}}\left(y_{1}, \ldots, y_{n}\right)\right]=\frac{-\left(\frac{\partial}{\partial \theta} \tau(\theta)\right)^{2}}{\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)\right]} \leftarrow \text { is } n \cdot \mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f_{Y}(y ; \theta)\right] \text { if iid }-1 \text { if } \tau(\theta)=\theta,
$$

- Such estimad $\tau(\theta)$ is given by

$$
\tau(\theta)=-\frac{\frac{\partial}{\partial \theta} C(\theta)}{\frac{\partial}{\partial \theta} D(\theta)}, \text { or }=-\frac{A(\theta)}{B(\theta)}
$$

- After this estimad is found, its variance can be calculated by:
- CR Bound
- Traditional statistics
$-\operatorname{Var}\left[\hat{\tau}\left(y_{1}, \ldots, y_{n}\right)\right]=\frac{-1}{B(\theta)} \cdot \frac{d}{d \theta} \frac{A(\theta)}{B(\theta)}$

7 Sufficient Statistics (SS), $w\left(Y_{1}, \ldots, Y_{n}\right)$, for a parameter θ

For n RVs, Y_{1}, \ldots, Y_{n}, whose JDF is $f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)$, a function $w:=w\left(Y_{1}, \ldots, Y_{n}\right)$ is a SS for the paramter θ iff the conditional distribution of those RVs - given w - is independent of $\theta:{ }^{4}$

$$
\begin{aligned}
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} \mid w ; \theta\right), \text { by definition } & \equiv \frac{f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}, w ; \theta\right)}{f_{W}(w ; \theta)} \\
\text { this is equivalently: } & =\frac{f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)}{f_{W}(w ; \theta)} \\
\text { core of this "iff" } \rightarrow & \left.=h\left(Y_{1}, \ldots, Y_{n}\right) \text { (i.e., indep. of } \theta\right) \\
& \Leftrightarrow w\left(Y_{1}, \ldots, Y_{n}\right) \text { is a SS for } \theta .
\end{aligned}
$$

(Reason for the equivalence on the second line: Since w is a function of Y_{i} 's, when Y_{i} 's are all speficied, w is also determined.)

This expression is equivalent to:

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)=f_{W}(w ; \theta) \cdot h\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow w\left(Y_{1}, \ldots, Y_{n}\right) \text { is a SS for } \theta
$$

If the support of Y_{i} 's is independent of the parameter θ, then this is also equivalent to:

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)=g(w ; \theta) \cdot h\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow w\left(Y_{1}, \ldots, Y_{n}\right) \text { is a SS for } \theta
$$

where g is any function of w (and thus of θ).

7.1 Minimal, Non-Trivial Sufficient Statistics (MNTSS) - How To Find

7.1.1 When the support of Y_{i} 's is independent of θ

Method 1: Factorization If:

- the JDF $f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)$ can be factorized into $f_{W}(w ; \theta) \cdot h\left(y_{1}, \ldots, y_{n}\right)$, and
- $\operatorname{dim}(w)<n$,
then w is a MNTSS of θ.
Method 2: Smith-Jones (preferred) Assuming 2 sets of readings are obtained from the same set of n RVs, $y_{11}, \ldots, y_{1 n}$ and $y_{21}, \ldots, y_{2 n}$, we look at the ratio of their probability: $R=\frac{f_{Y_{1}, \ldots, Y_{n}}\left(y_{11}, \ldots, y_{1 n} ; \theta\right)}{f_{Y_{1}, \ldots, Y_{n}}\left(y_{21}, \ldots, y_{2 n} ; \theta\right)}$. If this can be simplified to $\frac{g\left(y_{11}, \ldots, y_{1 n}\right)}{g\left(y_{11}, \ldots, y_{1 n}\right)}$, then this $g\left(Y_{1}, \ldots, Y_{n}\right)$ is a MNTSS of θ.

[^1]Method 3: Exponential Family If the JDF can be written in the "exponential family" form, then the thencalled MVU estimator, $\hat{\tau}\left(Y_{1}, \ldots, Y_{n}\right)$ is a MNTSS of θ.

7.1.2 When the support of Y_{i} 's does depend on θ

- $(a, b(\theta))$: The only possible MNTSS is $Y_{\max }\left({ }^{\left(" Y_{(n)}\right)}\right.$ ").
- $(a(\theta), b)$: The only possible MNTSS is $Y_{\min }\left(" Y_{(1)}{ }^{\prime \prime}\right)$.

Whichever the case, to confirm the MNTSS, $f_{Y}(y ; \theta)$ should be able to be factorized into $g(y) \cdot h(\theta)$.

7.2 Rao-Blackwell Theorem

Supposing $w\left(Y_{1}, \ldots, Y_{n}\right)$ is a SS for the parameter θ :

1. The MVU estimator of the estimable function, $\tau(\theta)$, is some unique function of w.
2. This unique MVU estimator of $\tau(\theta)$ is $\mathrm{E}(\hat{\tau} \mid w)$, where $\hat{\tau}\left(Y_{1}, \ldots, Y_{n}\right)$ is ANY unbiased estimator of θ.

They lead to 2 approaches ${ }^{6}$ to finding rhe MVU estimator of $\tau(\theta)$:

1. Consider only function of w as possibilities.
2. Find any unbaised estimator of $\tau(\theta)$, find its conditional expectation given w, which exactly must be the MVU estimator we want to find.

8 Maximum-Likelihood Estimation (One-Parameter Case)

- The JDF, $f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n} ; \theta\right)$, without changing its expression, can be thought as a "likelihood" ${ }^{7} L\left(\theta ; y_{1}, \ldots, y_{n}\right)$.
- The "Maximum Likelihood Estimator" of θ, is denoted by $\hat{\theta}_{\text {MLE }}\left(y_{1}, \ldots, y_{n}\right)$.
- The "Maximum Likelihood Estimate" of θ, a value of $\hat{\theta}_{\text {MLE }}\left(y_{1}, \ldots, y_{n}\right)$, is the value at which $L\left(\theta ; y_{1}, \ldots, y_{n}\right)$ is maximized (usually we look at $\ln L$ for simplicity).

8.1 Properties

- Invariance: Wraping the parameter θ with a monotonic function modified its MLE-tor alike.
- Relation with SS: The MLE-tor, $\hat{\theta}_{\text {MLE }}\left(y_{1}, \ldots, y_{n}\right)$ is the same as $\operatorname{SS} w\left(y_{1}, \ldots, y_{n}\right)$.
- Asymptotic results ${ }^{8}$:
- MLE is asymptotically unbiased: As $n \rightarrow \infty, \mathrm{E}\left[\hat{\theta}_{\mathrm{MLE}}\left(y_{1}, \ldots, y_{n}\right)\right] \rightarrow \theta$.
- MLE asymptotically attains a normal distribution: As $n \rightarrow \infty, \hat{\theta}_{\text {MLE }}\left(y_{1}, \ldots, y_{n}\right) \sim N$.
- MLE asymptotically achieves the CR Bound: As $n \rightarrow \infty$, $\operatorname{Var}\left(\hat{\theta}_{\text {MLE }}\left(y_{1}, \ldots, y_{n}\right)\right) \rightarrow$ the CR Bound.

9 Common Distributions

Name	Expression	Mean	Variance
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}$	μ	σ^{2}
$\operatorname{Gamma}(\alpha, \beta)$	$\frac{1}{\Gamma(\alpha) \beta^{\alpha}} y^{\alpha-1} e^{-\frac{y}{\beta}}$	$\alpha \beta$	$\alpha \beta^{2}$
$\operatorname{Cauchy}(\theta, \sigma)$	$\frac{1}{\pi \sigma} \cdot \frac{1}{1+\left(\frac{y-\theta}{\sigma}\right.}, \sigma>0$	D.N.E.	D.N.E.
"Chi-2" $\chi^{2}(\nu)$	$\frac{1}{y^{\frac{\nu}{2}} \cdot \Gamma\left(\frac{\nu}{2}\right)} \cdot y^{\frac{\nu}{2}-1} \cdot e^{-\frac{y}{2}}, y>0$	ν	2ν
$\operatorname{Binomial}(n, p)$	$\operatorname{Prob}(Y=y)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}, y=0, \ldots, n$	$n p$	$n p(1-p)$
$\operatorname{Poisson}(\lambda)$	$\operatorname{Prob}(Y=y)=e^{-\lambda} \frac{\lambda^{y}}{y!}, y=0,1, \ldots$	λ	λ

[^2]
9.1 Conversion Between Distributions

- (Any) Normal Distribution \rightarrow Standard Normal Distribution: If $Y \sim N\left(\mu, \sigma^{2}\right)$, then $\frac{Y-\mu}{\sigma} \sim N(0,1)$.
- Standard Normal Distribution \rightarrow Chi-Square Distribution: If $Y \sim N(0,1)$, then $Y^{2} \sim \chi^{2}(\nu=1)$.

9.2 Properties of Chi-Square Distribution

- The sum of some χ^{2}-distributed RVs is another χ^{2}-distributed RV with a degree-of-freedom of the sum of those of the summand RVs: $Y_{i} \sim \chi^{2}\left(\nu_{i}\right)$ for $i=1, \ldots, n \Rightarrow \sum_{i=1}^{n} Y_{i} \sim \chi^{2}\left(\sum_{i=1}^{n} \nu_{i}\right)$.

9.3 Properties of Poisson Distribution

- The sum of some Poisson-distributed RVs is another Poisson-distributed RV with a λ of the sum of those of the summand RVs: $Y_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ for $i=1, \ldots, n \Rightarrow \sum_{i=1}^{n} Y_{i} \sim \operatorname{Poisson}\left(\sum_{i=1}^{n} \lambda_{i}\right)$.
- If the sum of some Poisson-distributed RVs is fixed, then any partial sum of these RVs is a binomiallydistributed RV whose
- index n is equal to the fixed total sum;
- parameter p is equal to the ratio $\frac{\sum_{\text {partial sum }} \lambda_{j}}{\sum_{\text {total sum }} \lambda_{i}}$.
- (Continuing from above) When the summand RVs are iid, the partial sum of any j of them \sim Binomial (total sum, $\frac{j}{n}$).

[^0]: ${ }^{1}$ "There exists an estimad of $\theta, \tau(\theta)$, that has an unbiased estimator, $\hat{\tau}_{M L U}\left(y_{1}, \ldots, y_{n}\right)$, whose variance is this value."
 ${ }^{2}$ As you convert it into this form, in the same time, the MVU estimator $\hat{\tau}_{M L U}\left(y_{1}, \ldots, y_{n}\right)$ is identified.

[^1]: ${ }^{3}$ The MVU estimator $\hat{\tau}_{\text {MLU }}\left(y_{1}, \ldots, y_{n}\right)$ may not exist / be known by the time you evaluate this Bound.
 ${ }^{4} w$ is like a sponge on a wet plate $f_{Y_{1}, \ldots, Y_{n}}$: it sucks up all the information contained in the water θ.
 5^{5} i.e., the NUMERATOR and the DENOMINATOR are of the same form independent of θ

[^2]: ${ }^{6}$ Neither guranteed to work.
 ${ }^{7}$ If we encountered such observation, y_{1}, \ldots, y_{n}, how likely is the parameter θ to take on a particular value of θ ?
 ${ }^{8}$ Due to the Invariance Property, all $\hat{\theta}_{\text {MLE }}\left(y_{1}, \ldots, y_{n}\right)$ here can also be a function of that.

