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Abstract
This is meant for STAT512 by Professor Ewens at the University of Pennsylvania.

Part 1
Concepts

1 Basic Aims of Statistics

e To estimate the range of a parameter optimally.

e To test hypotheses about the numerical value of the parameter optimally.

2 Statistics

Statistics is an inferential science bansed on observations involving randomness.

3 Quantities
e A "random variable", Y, follows a distribution which depends on some parameter 6.
— We want to estimate the parameter 6, but -- more often -- we estimate an one-to-one function of it, 7(6).
Whichever the case, the variable we want to estimate is called the estimand.
— A function involving a R.V. Y, f(Y,...), is also a RV.

e Any function f(Y') of the RV Y alone can be seen as an estimator for the estimand 7(6) associated with its
distribution.

— If the mean of this function, E[f(Y)], happens to be the estimand itself, then this function -- as an
estimator -- is unbiased.

* The MVU (“minimal variance unbiased”) estimator of 7(¢): The unbiased estimator of 7(9)
whose variance is < any other unbiased estimator of 7(6).

— The value an estimator takes on (or "yields") is called an estimate.

e Sufficient Statistics, w(Y1,...,Y},), of a parameter, 6, is a function of the n iid RVs whose JDF will become
independent of this parameter if w is given.

— The Minimal Non-Trivial Sufficient Statistics (MINTSS) has two constraints over the ordinary
definition of SS:

* Minimality: Any other SS can be reduced (read: "transformed via a function") into this SS.

* Non-triviality: The dimension of this SS should be < n. i.e, we have actually cut off some data /
compressed the data.

e Others



— “Average” is not “mean”:

* “Mean” (p) is a parameter.
* “Average” can be either
-aRV:Y, or
- a number: .
— Variance:Var (Y) = E (Y?) — E*(Y).

Part 11
Formulas

4 Gamma Function
e Definition: T'(z) = [~ t*~te~'dt.
e Values:
~T(1)= [ etdt=1
—T(@2)=[f"t-etdt=1
ST = f et =

e Recurrence Relation: I'(z) = (z — 1) - T'(z — 1)

— If z is integer: T' (z) = (z — 1)!

— If £ > 0 but is not int: Use the Recurrence Relation to strip the “z” to the lowest number € (1,2), then
plug in the value as given in the table.

e Integrals involving Gamma Function:
— [t et dt = ¢ - T ()
— Jo g(t) - e~V dt: often helpful to set h(t) =:t'.

5 The density functions of order statistics (OS) of n iid continuous RVs
Y~ fly)

e The i-th OS alone: fy, (yw) = ity [Fy ()] f (W) - [1 = By (v)]"

—1

e The JDF of the i-th OS and the j-th OS: fv, vi, (v, ¥)) = oy FY ()]~ fv (v -
> _
[y (y)) = By (v)l”™ v (wy) - [1 = Fy ()]

n—j

6 The Cramer-Rao Lower Bound of the Variance of an Estimator

e This Bound is achievable! iff the JDF fy, v, (y1,...,yn;0) can be written in the “exponential family” form:

Iy Wi ooy Yns 0) = Wy, or, ) - €COFPO LU WL 4m)

2

1“There exists an estimad of 0, 7 (0), that has an unbiased estimator, ?vru (y1, ..., Yn ), whose variance is this value.”
2As you convert it into this form, in the same time, the MVU estimator #yr,u (Y1, ..., Yn) is identified.



e The Bound is given by:® Var [ (y1,...,yn)] >

— (& 9))2 —is —1if7(0) =40
Var [# e tn)] = —— 507 ( . 2 L
ar [TMLE (yl Y )} E [% In th'”,Yn (yl7 s Uns 9)] —isn-E [86? ln fY (y’ 9):| lf l'Ld
e Such estimad 7 (6) is given by
2.0 (0) A(9)
7(0)=—-2L L or =~
© 2D (0) B (0)

e After this estimad is found, its variance can be calculated by:

— CR Bound
— Traditional statistics

R _ A(6
— Var [T (y1, ..., Un)] = Wé) ’ d%%

7 Sufficient Statistics (SS), w(Y3,...,Y,), for a parameter 6

For n RVs, Y1, ...,Y,, whose JDF is fy, . v, (y1,..,yn;0), a function w := w(¥1,...,Y,) is a SS for the paramter ¢
iff the conditional distribution of those RVs — given w — is independent of 6: 4

le,..,,Yn (ylv vy Yn, W5 0)
fw (w3 0)

s Yns 0
this is equivalently: = le""’;" Q(h’ 0),3/ )
w (w;

core of this "ift"— = h (Y7,...,Y,) (ie., indep. of 0)
< w(Yy,...,Y,) is a SS for 6.

fri,.v,, (W1, .., yn|w; 0) , by definition =

(Reason for the equivalence on the second line: Since w is a function of ¥;’s, when Y;’s are all speficied, w is
also determined.)
This expression is equivalent to:

v, Wi e Un; 0) = fw (w3 0) - b (y1, -y yn) < w(Y, ..., Y,) is a SS for 6.

If the support of Y;’s is independent of the parameter 6, then this is also equivalent to:
fro v, Wi, e Yn; 0) = g (w3 0) - b (y1, ..., yn) © w(Y,...,Y,) is a SS for 6

where g is any function of w (and thus of ).

7.1 Minimal, Non-Trivial Sufficient Statistics (MNTSS) — How To Find
7.1.1 When the support of Y;’s is independent of 6
Method 1: Factorization If:

e the JDF fy, v, (Y1,...,yn;0) can be factorized into fw (w;0) - h(y1,...,yn), and

o dim (w) < n,

then w is a MNTSS of 6.

Method 2: Smith-Jones (preferred) Assuming 2 sets of readings are obtained from the same set of n RVs,
_ I vy (Y11,--Y1n;

yll? R} leL a’lld y2 LIRRES) y2n7 we IOOk at the Iati() ()f llleil [)I(Fl)al)i il y.R f Y. ( .
Y1,...s n\Y21,--,Y2n;
tO g(yllv“ﬂylnf)S l e hlS g (Y 5 ...7Yn) iS a MIJ ISS Of 6~

9(Y11,--5Y1n) 7’

z; . If this can be simplified

3The MVU estimator v,y (y1, .-, Yyn) may not exist / be known by the time you evaluate this Bound.
4w is like a sponge on a wet plate fyq,...,Y,: it sucks up all the information contained in the water 6.
5i.e., the NUMERATOR and the DENOMINATOR are of the same form independent of



Method 3: Exponential Family If the JDF can be written in the “exponential family” form, then the then-
called MVU estimator, 7 (Y7, ..., Y, )is a MNTSS of 6.
7.1.2 When the support of Y;’s does depend on 0
e (a,b(0)): The only possible MNTSS is Ynax(“Yn)").-
e (a(f),b): The only possible MNTSS is Yiuin (“Y(1)")-
Whichever the case, to confirm the MNTSS, fy (y;6) should be able to be factorized into g(y) - h(6).

7.2 Rao-Blackwell Theorem
Supposing w(Y7, ..., Y,) is a SS for the parameter 6:

1. The MVU estimator of the estimable function, 7 (6), is some unique function of w.

2. This unique MVU estimator of 7 (0) is E (7|w), where 7 (Y7, ...,Y;) is ANY unbiased estimator of 6.
They lead to 2 approaches® to finding the MVU estimator of 7 ():

1. Consider only function of w as possibilities.

2. Find any unbaised estimator of 7 (6), find its conditional expectation given w, which exactly must be the
MVU estimator we want to find.

8 Maximum-Likelihood Estimation (One-Parameter Case)

e The JDF, fy, . .
e The “Maximum Likelihood Estimator” of 6, is denoted by OMLE (Y1, ey Yn)-
e The “Maximum Likelihood Estimate” of 6, a value of Oyrg (Y1, -, Yn), is the value at which L (6;y1, ..., yn)is
maximized (usually we look at In L for simplicity).
8.1 Properties
e Invariance: Wraping the parameter fwith a monotonic function modified its MLE-tor alike.
e Relation with SS: The MLE-tor, OMLE (Y1, ..., yn) is the same as SS w (Y1, ..., Yn)-
e Asymptotic results®:

— MLE is asymptotically unbiased: As n — oo, E |OyrE (Y1, ey yn)} — 0.

— MLE asymptotically attains a normal distribution: As n — oo, N (Y1, .y Yn) ~ N.

— MLE asymptotically achieves the CR Bound: As n — oo, Var (éMLE (Y1 eens yn)) —the CR Bound.

9 Common Distributions

v, (Y1, -y Yn; 0), without changing its expression, can be thought as a “likelihood”” L (0;y1, ..., Yn )

’ Name \ Expression \ Mean \ Variance ‘
(=)
Normal(u, 02) 21We_ 507 I o?
Gamma(a, () F(al)ﬁa yo—le= % af aB?
Cauchy(0, o) L H(ylfe)Q ,0>0 D.N.E. | D.N.E.
“Chi-2"x2(v) y%;(Z yz l.e 2, y>0 v 2v
2
Binomial(n,p) | Prob(Y =y) = (7)0¥ (1 -0)""", y=0,...n np np(1 —p)
Poisson(\) Prob(Y = y) = e‘*?;—?, y=0,1, A A
6Neither guranteed to work.
7If we encountered such observation, y1, ..., yn, how likely is the parameter 6 to take on a particular value of 6?7

8Due to the Invariance Property, all éMLE (y1,-..,yn) here can also be a function of that.
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differ-
ently



9.1 Conversion Between Distributions

e (Any) Normal Distribution — Standard Normal Distribution: If Y ~ N (y,0?), then % ~ N (0,1).

e Standard Normal Distribution —Chi-Square Distribution: If Y ~ N (0,1), then Y2 ~ x? (v = 1).

9.2 Properties of Chi-Square Distribution

e The sum of some Y2-distributed RVs is another y2-distributed RV with a degree-of-freedom of the sum of
those of the summand RVs: V; ~ x?(v;) for i = 1,...,n= > | Y, ~ x> (30, vi).

9.3 Properties of Poisson Distribution

e The sum of some Poisson-distributed RVs is another Poisson-distributed RV with a A of the sum of those of
the summand RVs: Y; ~ Poisson()\;) for i = 1,...,n= > | ¥; ~ Poisson (> i, \;).

e If the sum of some Poisson-distributed RVs is fixed, then any partial sum of these RVs is a binomially-
distributed RV whose

— index n is equal to the fixed total sum;
. . ‘ A
— parameter p is equal to the ratio M“m/\]

total sum

e (Continuing from above) When the summand RVs are iid, the partial sum of any j of them ~ Binomial (total sum, £).

n



