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Abstract

This is meant for STAT512 by Professor Ewens at the University of Pennsylvania.

Part I

Concepts
1 Basic Aims of Statistics
• To estimate the range of a parameter optimally.

• To test hypotheses about the numerical value of the parameter optimally.

2 Statistics
Statistics is an inferential science bansed on observations involving randomness.

3 Quantities
• A "random variable", Y , follows a distribution which depends on some parameter θ.

– We want to estimate the parameter θ, but -- more often -- we estimate an one-to-one function of it, τ(θ).
Whichever the case, the variable we want to estimate is called the estimand.

– A function involving a R.V. Y , f(Y, ...), is also a RV.

• Any function f(Y ) of the RV Y alone can be seen as an estimator for the estimand τ(θ) associated with its
distribution.

– If the mean of this function, E [f(Y )], happens to be the estimand itself, then this function -- as an
estimator -- is unbiased.

∗ The MVU (“minimal variance unbiased”) estimator of τ(θ): The unbiased estimator of τ(θ)
whose variance is ≤ any other unbiased estimator of τ(θ).

– The value an estimator takes on (or "yields") is called an estimate.

• Sufficient Statistics, w(Y1, ..., Yn), of a parameter, θ, is a function of the n iid RVs whose JDF will become
independent of this parameter if w is given.

– The Minimal Non-Trivial Sufficient Statistics (MNTSS) has two constraints over the ordinary
definition of SS:

∗ Minimality: Any other SS can be reduced (read: "transformed via a function") into this SS.
∗ Non-triviality: The dimension of this SS should be < n. i.e, we have actually cut off some data /

compressed the data.

• Others
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– “Average” is not “mean”:

∗ “Mean” (µ) is a parameter.
∗ “Average” can be either
· a RV: Ȳ , or
· a number: ȳ.

– Variance:Var (Y ) = E
(
Y 2
)
− E2 (Y ).

Part II

Formulas
4 Gamma Function
• Definition: Γ (x) =

∫∞
0
tx−1e−tdt.

• Values:

– Γ (1) =
∫∞

0
e−tdt = 1

– Γ (2) =
∫∞

0
t · e−tdt = 1

– Γ
(

1
2

)
=
∫∞

0
1√
t
e−tdt =

√
π

• Recurrence Relation: Γ (x) = (x− 1) · Γ (x− 1)

– If x is integer: Γ (x) = (x− 1)!

– If x > 0 but is not int: Use the Recurrence Relation to strip the “x” to the lowest number ∈ (1, 2), then
plug in the value as given in the table.

• Integrals involving Gamma Function:

–
∫∞

0
tx−1e−ctdt = c−x · Γ (x)

–
∫∞

0
g(t) · e−h(t)dt: often helpful to set h(t) =: t′.

5 The density functions of order statistics (OS) of n iid continuous RVs
Yi ∼ f(y)

• The i-th OS alone: fY(i)

(
y(i)

)
= n!

(i−1)!(n−i)!
[
FY
(
y(i)

)]i−1 · fY
(
y(i)

)
·
[
1− FY

(
y(i)

)]n−i
• The JDF of the i-th OS and the j-th OS: fY(i),Y(j)

(
y(i), y(j)

)
= n!

(i−1)!(j−i)!(n−j)!
[
FY
(
y(i)

)]i−1 · fY
(
y(i)

)
·[

FY
(
y(j)

)
− FY

(
y(i)

)]j−i−1 · fY
(
y(j)

)
·
[
1− FY

(
y(j)

)]n−j
6 The Cramer-Rao Lower Bound of the Variance of an Estimator
• This Bound is achievable1 iff the JDF fY1,...,Yn (y1, ..., yn; θ) can be written in the “exponential family” form:

fY1,...,Yn (y1, ..., yn; θ) = h(y1, ..., yn) · eC(θ)+D(θ)·τ̂MLU(y1,...,yn)

2

1“There exists an estimad of θ, τ (θ), that has an unbiased estimator, τ̂MLU (y1, ..., yn), whose variance is this value.”
2As you convert it into this form, in the same time, the MVU estimator τ̂MLU (y1, ..., yn) is identified.
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• The Bound is given by:3 Var [τ̂ (y1, ..., yn)] ≥

Var [τ̂MLE (y1, ..., yn)] =
−
(
∂
∂θ τ (θ)

)2
E
[
∂2

∂θ2 ln fY1,...,Yn (y1, ..., yn; θ)
] ← is − 1 if τ (θ) = θ

← is n · E
[
∂2

∂θ2 ln fY (y; θ)
]
if iid

• Such estimad τ (θ) is given by

τ (θ) = −
∂
∂θC (θ)
∂
∂θD (θ)

, or = −A (θ)

B (θ)
.

• After this estimad is found, its variance can be calculated by:

– CR Bound
– Traditional statistics
– Var [τ̂ (y1, ..., yn)] = −1

B(θ) ·
d
dθ

A(θ)
B(θ)

7 Sufficient Statistics (SS), w(Y1, ..., Yn), for a parameter θ
For n RVs, Y1, ..., Yn, whose JDF is fY1,...,Yn (y1, ..., yn; θ), a function w := w(Y1, ..., Yn) is a SS for the paramter θ
iff the conditional distribution of those RVs – given w – is independent of θ: 4

fY1,...,Yn (y1, ..., yn|w; θ) , by definition ≡ fY1,...,Yn (y1, ..., yn, w; θ)

fW (w; θ)

this is equivalently: =
fY1,...,Yn (y1, ..., yn; θ)

fW (w; θ)

core of this "iff"→ = h (Y1, ..., Yn) (i.e., indep. of θ)
⇔ w(Y1, ..., Yn) is a SS for θ.

(Reason for the equivalence on the second line: Since w is a function of Yi’s, when Yi’s are all speficied, w is
also determined.)

This expression is equivalent to:

fY1,...,Yn (y1, ..., yn; θ) = fW (w; θ) · h (y1, ..., yn)⇔ w(Y1, ..., Yn) is a SS for θ.

If the support of Yi’s is independent of the parameter θ, then this is also equivalent to:

fY1,...,Yn (y1, ..., yn; θ) = g (w; θ) · h (y1, ..., yn)⇔ w(Y1, ..., Yn) is a SS for θ

where g is any function of w (and thus of θ).

7.1 Minimal, Non-Trivial Sufficient Statistics (MNTSS) – How To Find
7.1.1 When the support of Yi’s is independent of θ

Method 1: Factorization If:

• the JDF fY1,...,Yn (y1, ..., yn; θ) can be factorized into fW (w; θ) · h (y1, ..., yn), and

• dim (w) < n,

then w is a MNTSS of θ.

Method 2: Smith-Jones (preferred) Assuming 2 sets of readings are obtained from the same set of n RVs,
y11, ..., y1n and y21, ..., y2n, we look at the ratio of their probability:R =

fY1,...,Yn (y11,...,y1n;θ)

fY1,...,Yn (y21,...,y2n;θ) . If this can be simplified

to g(y11,...,y1n)
g(y11,...,y1n)

5, then this g (Y1, ..., Yn) is a MNTSS of θ.

3The MVU estimator τ̂MLU (y1, ..., yn) may not exist / be known by the time you evaluate this Bound.
4w is like a sponge on a wet plate fY1,...,Yn : it sucks up all the information contained in the water θ.
5i.e., the NUMERATOR and the DENOMINATOR are of the same form independent of θ
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Method 3: Exponential Family If the JDF can be written in the “exponential family” form, then the then-
called MVU estimator, τ̂ (Y1, ..., Yn)is a MNTSS of θ.

7.1.2 When the support of Yi’s does depend on θ

• (a, b (θ)): The only possible MNTSS is Ymax(“Y(n)”).

• (a (θ) , b): The only possible MNTSS is Ymin(“Y(1)”).

Whichever the case, to confirm the MNTSS, fY (y; θ) should be able to be factorized into g(y) · h(θ).

7.2 Rao-Blackwell Theorem
Supposing w(Y1, ..., Yn) is a SS for the parameter θ:

1. The MVU estimator of the estimable function, τ (θ), is some unique function of w.

2. This unique MVU estimator of τ (θ) is E (τ̂ |w), where τ̂ (Y1, ..., Yn) is ANY unbiased estimator of θ.

They lead to 2 approaches6 to finding rhe MVU estimator of τ (θ):

1. Consider only function of w as possibilities.

2. Find any unbaised estimator of τ (θ), find its conditional expectation given w, which exactly must be the
MVU estimator we want to find.

8 Maximum-Likelihood Estimation (One-Parameter Case)
• The JDF, fY1,...,Yn (y1, ..., yn; θ), without changing its expression, can be thought as a “likelihood”7 L (θ; y1, ..., yn).

• The “Maximum Likelihood Estimator” of θ, is denoted by θ̂MLE (y1, ..., yn).

• The “Maximum Likelihood Estimate” of θ, a value of θ̂MLE (y1, ..., yn), is the value at which L (θ; y1, ..., yn)is
maximized (usually we look at lnL for simplicity).

8.1 Properties
• Invariance: Wraping the parameter θwith a monotonic function modified its MLE-tor alike.

• Relation with SS: The MLE-tor, θ̂MLE (y1, ..., yn) is the same as SS w (y1, ..., yn). – though
denoted
differ-
ently

• Asymptotic results8:

– MLE is asymptotically unbiased: As n→∞, E
[
θ̂MLE (y1, ..., yn)

]
→ θ.

– MLE asymptotically attains a normal distribution: As n→∞, θ̂MLE (y1, ..., yn) ∼ N .

– MLE asymptotically achieves the CR Bound: As n→∞, Var
(
θ̂MLE (y1, ..., yn)

)
→the CR Bound.

9 Common Distributions
Name Expression Mean Variance

Normal(µ, σ2) 1√
2πσ

e−
(y−µ)2

2σ2 µ σ2

Gamma(α, β) 1
Γ(α)βα y

α−1e−
y
β αβ αβ2

Cauchy(θ, σ) 1
πσ ·

1

1+( y−θσ )
2 ,σ > 0 D.N.E. D.N.E.

“Chi-2”χ2(ν) 1

y
ν
2 ·Γ( ν2 )

· y ν2−1 · e−
y
2 , y > 0 ν 2ν

Binomial(n, p) Prob(Y = y) =
(
n
y

)
θy (1− θ)n−y, y = 0, ..., n np np(1− p)

Poisson(λ) Prob(Y = y) = e−λ λ
y

y! , y = 0, 1, ... λ λ

6Neither guranteed to work.
7If we encountered such observation, y1, ..., yn, how likely is the parameter θ to take on a particular value of θ?
8Due to the Invariance Property, all θ̂MLE (y1, ..., yn) here can also be a function of that.
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9.1 Conversion Between Distributions
• (Any) Normal Distribution → Standard Normal Distribution: If Y ∼ N

(
µ, σ2

)
, then Y−µ

σ ∼ N (0, 1).

• Standard Normal Distribution →Chi-Square Distribution: If Y ∼ N (0, 1), then Y 2 ∼ χ2 (ν = 1).

9.2 Properties of Chi-Square Distribution
• The sum of some χ2-distributed RVs is another χ2-distributed RV with a degree-of-freedom of the sum of

those of the summand RVs: Yi ∼ χ2(νi) for i = 1, ..., n⇒
∑n
i=1 Yi ∼ χ2 (

∑n
i=1 νi).

9.3 Properties of Poisson Distribution
• The sum of some Poisson-distributed RVs is another Poisson-distributed RV with a λ of the sum of those of

the summand RVs: Yi ∼ Poisson(λi) for i = 1, ..., n⇒
∑n
i=1 Yi ∼ Poisson (

∑n
i=1 λi).

• If the sum of some Poisson-distributed RVs is fixed, then any partial sum of these RVs is a binomially-
distributed RV whose

– index n is equal to the fixed total sum;

– parameter p is equal to the ratio
∑

partial sum λj∑
total sum λi

.

• (Continuing from above) When the summand RVs are iid, the partial sum of any j of them∼ Binomial
(
total sum, jn

)
.
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