Know For Midterm 2018

Mingyang Li

April 27, 2018

Abstract

This is meant for STAT512 by Professor Ewens at the University of Pennsylvania.

Part I Concepts

1 Basic Aims of Statistics

- To estimate the range of a parameter optimally.
- To test hypotheses about the numerical value of the parameter optimally.

2 Statistics

Statistics is an inferential science bansed on observations involving randomness.

3 Quantities

- A "random variable", Y, follows a distribution which depends on some parameter θ .
 - We want to estimate the parameter θ , but -- more often -- we estimate an one-to-one function of it, $\tau(\theta)$. Whichever the case, the variable we want to estimate is called the **estimand**.
 - A function involving a R.V. Y, f(Y, ...), is also a RV.
- Any function f(Y) of the RV Y alone can be seen as an **estimator** for the <u>estimand</u> $\tau(\theta)$ associated with its distribution.
 - If the mean of this function, E[f(Y)], happens to be the <u>estimand</u> itself, then this function -- as an estimator -- is **unbiased**.
 - * The MVU ("minimal variance unbiased") estimator of $\tau(\theta)$: The <u>unbiased</u> estimator of $\tau(\theta)$ whose variance is \leq any other unbiased estimator of $\tau(\theta)$.
 - The value an estimator takes on (or "yields") is called an estimate.
- Sufficient Statistics, $w(Y_1, ..., Y_n)$, of a parameter, θ , is a function of the *n* iid RVs whose JDF will become independent of this parameter if *w* is given.
 - The Minimal Non-Trivial Sufficient Statistics (MNTSS) has two constraints over the ordinary definition of SS:
 - * Minimality: Any other SS can be reduced (read: "transformed via a function") into this SS.
 - * <u>Non-triviality</u>: The dimension of this SS should be < n. i.e, we have actually cut off some data / compressed the data.
- Others

- "Average" is not "mean":

- * "Mean" (μ) is a parameter.
- \ast "Average" can be either
 - · a RV: \overline{Y} , or
 - · a number: \bar{y} .

- Variance: Var $(Y) = E(Y^2) - E^2(Y)$.

Part II Formulas

4 Gamma Function

- Definition: $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$
- Values:
 - $-\Gamma(1) = \int_0^\infty e^{-t} dt = 1$
 - $-\Gamma(2) = \int_0^\infty t \cdot e^{-t} dt = 1$
 - $-\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \frac{1}{\sqrt{t}} e^{-t} dt = \sqrt{\pi}$
- Recurrence Relation: $\Gamma(x) = (x-1) \cdot \Gamma(x-1)$
 - If x is integer: $\Gamma(x) = (x-1)!$
 - If x > 0 but is not int: Use the Recurrence Relation to strip the "x" to the lowest number $\in (1, 2)$, then plug in the value as given in the table.
- Integrals involving Gamma Function:

$$-\int_0^\infty t^{x-1} e^{-ct} dt = c^{-x} \cdot \Gamma(x)$$

$$-\int_0^\infty g(t) \cdot e^{-h(t)} dt: \text{ often helpful to set } h(t) =: t'.$$

5 The density functions of order statistics (OS) of n iid continuous RVs $Y_i \sim f(y)$

- The *i*-th OS alone: $f_{Y_{(i)}}\left(y_{(i)}\right) = \frac{n!}{(i-1)!(n-i)!} \left[F_Y\left(y_{(i)}\right)\right]^{i-1} \cdot f_Y\left(y_{(i)}\right) \cdot \left[1 F_Y\left(y_{(i)}\right)\right]^{n-i}$
- The JDF of the *i*-th OS and the *j*-th OS: $f_{Y_{(i)},Y_{(j)}}\left(y_{(i)},y_{(j)}\right) = \frac{n!}{(i-1)!(j-i)!(n-j)!}\left[F_Y\left(y_{(i)}\right)\right]^{i-1} \cdot f_Y\left(y_{(i)}\right) \cdot \left[F_Y\left(y_{(j)}\right) F_Y\left(y_{(j)}\right)\right]^{j-i-1} \cdot f_Y\left(y_{(j)}\right) \cdot \left[1 F_Y\left(y_{(j)}\right)\right]^{n-j}$

6 The Cramer-Rao Lower Bound of the Variance of an Estimator

• This Bound is **achievable**¹ iff the JDF $f_{Y_1,...,Y_n}(y_1,...,y_n;\theta)$ can be written in the "exponential family" form:

$$f_{Y_1,...,Y_n}(y_1,...,y_n;\theta) = h(y_1,...,y_n) \cdot e^{C(\theta) + D(\theta) \cdot \hat{\tau}_{\mathrm{MLU}}(y_1,...,y_n)}$$

 $^{^{2}}$

¹"There exists an estimad of θ , $\tau(\theta)$, that has an unbiased estimator, $\hat{\tau}_{MLU}(y_1, ..., y_n)$, whose variance is this value."

²As you convert it into this form, in the same time, the MVU estimator $\hat{\tau}_{MLU}(y_1, ..., y_n)$ is identified.

• The Bound is given by:³ Var $[\hat{\tau}(y_1, ..., y_n)] \ge$

$$\operatorname{Var}\left[\hat{\tau}_{\mathrm{MLE}}\left(y_{1},...,y_{n}\right)\right] = \frac{-\left(\frac{\partial}{\partial\theta}\tau\left(\theta\right)\right)^{2}}{\operatorname{E}\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln f_{Y_{1},...,Y_{n}}\left(y_{1},...,y_{n};\theta\right)\right]} \stackrel{(\text{is } -1 \text{ if } \tau\left(\theta\right) = \theta}{\leftarrow \operatorname{is } n \cdot \operatorname{E}\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln f_{Y}\left(y;\theta\right)\right]} \text{ if } iid$$

• Such estimad $\tau(\theta)$ is given by

$$\tau\left(\theta\right) = -\frac{\frac{\partial}{\partial\theta}C\left(\theta\right)}{\frac{\partial}{\partial\theta}D\left(\theta\right)}, \, \mathrm{or} \; = -\frac{A\left(\theta\right)}{B\left(\theta\right)}.$$

- After this estimad is found, its variance can be calculated by:
 - CR Bound
 - Traditional statistics
 - $\operatorname{Var} \left[\hat{\tau} \left(y_1, ..., y_n \right) \right] = \frac{-1}{B(\theta)} \cdot \frac{d}{d\theta} \frac{A(\theta)}{B(\theta)}$

Sufficient Statistics (SS), $w(Y_1, ..., Y_n)$, for a parameter θ 7

For n RVs, $Y_1, ..., Y_n$, whose JDF is $f_{Y_1,...,Y_n}(y_1, ..., y_n; \theta)$, a function $w := w(Y_1, ..., Y_n)$ is a SS for the parameter θ iff the conditional distribution of those RVs – given w – is independent of θ : ⁴

$$\begin{aligned} f_{Y_1,...,Y_n}\left(y_1,...,y_n|w;\theta\right), \, \text{by definition} &\equiv \frac{f_{Y_1,...,Y_n}\left(y_1,...,y_n,w;\theta\right)}{f_W\left(w;\theta\right)} \\ \text{this is equivalently:} &= \frac{f_{Y_1,...,Y_n}\left(y_1,...,y_n;\theta\right)}{f_W\left(w;\theta\right)} \\ \text{core of this "iff"} \to &= h\left(Y_1,...,Y_n\right) \text{ (i.e., indep. of } \theta\right) \\ &\Leftrightarrow w(Y_1,...,Y_n) \text{ is a SS for } \theta. \end{aligned}$$

(Reason for the equivalence on the second line: Since w is a function of Y_i 's, when Y_i 's are all specified, w is also determined.)

This expression is equivalent to:

$$f_{Y_1,...,Y_n}\left(y_1,...,y_n;\theta\right) = f_W\left(w;\theta\right) \cdot h\left(y_1,...,y_n\right) \Leftrightarrow w(Y_1,...,Y_n) \text{ is a SS for } \theta.$$

If the support of Y_i 's is independent of the parameter θ , then this is also equivalent to:

$$f_{Y_1,...,Y_n}(y_1,...,y_n;\theta) = g(w;\theta) \cdot h(y_1,...,y_n) \Leftrightarrow w(Y_1,...,Y_n) \text{ is a SS for } \theta$$

where g is any function of w (and thus of θ).

Minimal, Non-Trivial Sufficient Statistics (MNTSS) – How To Find 7.1

When the support of Y_i 's is independent of θ 7.1.1

Method 1: Factorization If:

- the JDF $f_{Y_1,...,Y_n}(y_1,...,y_n;\theta)$ can be factorized into $f_W(w;\theta) \cdot h(y_1,...,y_n)$, and
- dim(w) < n,

then w is a MNTSS of θ .

Method 2: Smith-Jones (preferred) Assuming 2 sets of readings are obtained from the same set of n RVs, $y_{11}, ..., y_{1n}$ and $y_{21}, ..., y_{2n}$, we look at the ratio of their probability: $R = \frac{f_{Y_1,...,Y_n}(y_{11},...,y_{1n};\theta)}{f_{Y_1,...,Y_n}(y_{21},...,y_{2n};\theta)}$. If this can be simplified to $\frac{g(y_{11},...,y_{1n})}{g(y_{11},...,y_{1n})}$, then this $g(Y_1,...,Y_n)$ is a MNTSS of θ .

³The MVU estimator $\hat{\tau}_{MLU}(y_1, ..., y_n)$ may not exist / be known by the time you evaluate this Bound.

 $^{{}^{4}}w$ is like a sponge on a wet plate $f_{Y_1,...,Y_n}$: it **sucks up** all the information contained in the water θ . 5 i.e., the NUMERATOR and the DENOMINATOR are of the same form independent of θ

Method 3: Exponential Family If the JDF can be written in the "exponential family" form, then the thencalled MVU estimator, $\hat{\tau}(Y_1, ..., Y_n)$ is a MNTSS of θ .

7.1.2 When the support of Y_i 's does depend on θ

- $(a, b(\theta))$: The only possible MNTSS is $Y_{\max}("Y_{(n)}")$.
- $(a(\theta), b)$: The only possible MNTSS is $Y_{\min}("Y_{(1)}")$.

Whichever the case, to confirm the MNTSS, $f_Y(y;\theta)$ should be able to be factorized into $g(y) \cdot h(\theta)$.

7.2 Rao-Blackwell Theorem

Supposing $w(Y_1, ..., Y_n)$ is a SS for the parameter θ :

- 1. The MVU estimator of the estimable function, $\tau(\theta)$, is some unique function of w.
- 2. This unique MVU estimator of $\tau(\theta)$ is $E(\hat{\tau}|w)$, where $\hat{\tau}(Y_1, ..., Y_n)$ is ANY unbiased estimator of θ .

They lead to 2 approaches⁶ to finding the MVU estimator of $\tau(\theta)$:

- 1. Consider only function of w as possibilities.
- 2. Find any unbaised estimator of $\tau(\theta)$, find its conditional expectation given w, which exactly must be the MVU estimator we want to find.

8 Maximum-Likelihood Estimation (One-Parameter Case)

- The JDF, $f_{Y_1,...,Y_n}(y_1,...,y_n;\theta)$, without changing its expression, can be thought as a "likelihood"⁷ $L(\theta;y_1,...,y_n)$.
- The "Maximum Likelihood Estimator" of θ , is denoted by $\hat{\theta}_{MLE}(y_1, ..., y_n)$.
- The "Maximum Likelihood Estimate" of θ , a value of $\hat{\theta}_{MLE}(y_1, ..., y_n)$, is the value at which $L(\theta; y_1, ..., y_n)$ is maximized (usually we look at $\ln L$ for simplicity).

8.1 Properties

- Invariance: Wraping the parameter θ with a monotonic function modified its MLE-tor alike.
- Relation with SS: The MLE-tor, $\hat{\theta}_{MLE}(y_1, ..., y_n)$ is the same as SS $w(y_1, ..., y_n)$.
- Asymptotic results⁸:
 - MLE is asymptotically unbiased: As $n \to \infty$, $\mathrm{E}\left[\hat{\theta}_{\mathrm{MLE}}\left(y_1, ..., y_n\right)\right] \to \theta$.
 - MLE asymptotically attains a normal distribution: As $n \to \infty$, $\hat{\theta}_{\text{MLE}}(y_1, ..., y_n) \sim N$.
 - MLE asymptotically achieves the CR Bound: As $n \to \infty$, $\operatorname{Var}\left(\hat{\theta}_{\mathrm{MLE}}\left(y_1, ..., y_n\right)\right) \to$ the CR Bound.

9 Common Distributions

Name	Expression	Mean	Variance
$\boxed{\operatorname{Normal}(\mu,\sigma^2)}$	$\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$	μ	σ^2
Gamma (α, β)	$\frac{1}{\Gamma(\alpha)\beta^{lpha}}y^{lpha-1}e^{-rac{y}{eta}}$	$\alpha\beta$	$lphaeta^2$
$Cauchy(\theta, \sigma)$	$\frac{1}{\pi\sigma} \cdot \frac{1}{1 + \left(\frac{y-\theta}{\sigma}\right)^2}, \sigma > 0$	D.N.E.	D.N.E.
"Chi-2" $\chi^2(\nu)$	$\frac{1}{y^{\frac{\nu}{2}}\cdot\Gamma\left(\frac{\nu}{2}\right)}\cdot y^{\frac{\nu}{2}-1}\cdot e^{-\frac{y}{2}}, y>0$	ν	2ν
Binomial (n, p)	$Prob(Y = y) = {\binom{n}{y}} \theta^{y} (1 - \theta)^{n-y}, y = 0,, n$	np	np(1-p)
$\operatorname{Poisson}(\lambda)$	$Prob(Y = y) = e^{-\lambda} \frac{\lambda^y}{y!}, y = 0, 1,$	λ	λ

⁶Neither guranteed to work.

-	thou
	deno
	diffe
	ently

⁷If we encountered such observation, $y_1, ..., y_n$, how likely is the parameter θ to take on a particular value of θ ?

⁸Due to the Invariance Property, all $\hat{\theta}_{MLE}(y_1, ..., y_n)$ here can also be a function of that.

9.1 Conversion Between Distributions

- (Any) Normal Distribution \rightarrow Standard Normal Distribution: If $Y \sim N(\mu, \sigma^2)$, then $\frac{Y-\mu}{\sigma} \sim N(0, 1)$.
- Standard Normal Distribution \rightarrow Chi-Square Distribution: If $Y \sim N(0, 1)$, then $Y^2 \sim \chi^2 (\nu = 1)$.

9.2 Properties of Chi-Square Distribution

• The sum of some χ^2 -distributed RVs is another χ^2 -distributed RV with a degree-of-freedom of the sum of those of the summand RVs: $Y_i \sim \chi^2(\nu_i)$ for $i = 1, ..., n \Rightarrow \sum_{i=1}^n Y_i \sim \chi^2(\sum_{i=1}^n \nu_i)$.

9.3 Properties of Poisson Distribution

- The sum of some Poisson-distributed RVs is another Poisson-distributed RV with a λ of the sum of those of the summand RVs: $Y_i \sim \text{Poisson}(\lambda_i)$ for $i = 1, ..., n \Rightarrow \sum_{i=1}^n Y_i \sim \text{Poisson}(\sum_{i=1}^n \lambda_i)$.
- If the sum of some Poisson-distributed RVs is fixed, then any partial sum of these RVs is a binomiallydistributed RV whose
 - index n is equal to the fixed total sum;

- parameter p is equal to the ratio $\frac{\sum_{\text{partial sum}} \lambda_j}{\sum_{\text{total sum}} \lambda_i}$.

• (Continuing from above) When the summand RVs are iid, the partial sum of any j of them ~ Binomial (total sum, $\frac{j}{n}$).